Since this is now BookS only, we can simplify the code a bit and check
has_hv_mode instead of enumerating the exception models. LPES0 does
not make sense if there is no MSR_HV.
Note that QEMU does not support HV mode on 970 and POWER5+ so we don't
set MSR_HV in msr_mask.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220124184605.999353-5-farosas@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Differences from the generic powerpc_excp code:
- Not BookE, so some MSR bits are cleared at interrupt dispatch;
- Always uses HV_EMU if the CPU has MSR_HV;
- Exceptions always delivered in 64 bit.
Exceptions used:
POWERPC_EXCP_ALIGN
POWERPC_EXCP_DECR
POWERPC_EXCP_DSEG
POWERPC_EXCP_DSI
POWERPC_EXCP_EXTERNAL
POWERPC_EXCP_FPU
POWERPC_EXCP_FU
POWERPC_EXCP_HDECR
POWERPC_EXCP_HDSI
POWERPC_EXCP_HISI
POWERPC_EXCP_HVIRT
POWERPC_EXCP_HV_EMU
POWERPC_EXCP_HV_FU
POWERPC_EXCP_ISEG
POWERPC_EXCP_ISI
POWERPC_EXCP_MAINT
POWERPC_EXCP_MCHECK
POWERPC_EXCP_PERFM
POWERPC_EXCP_PROGRAM
POWERPC_EXCP_RESET
POWERPC_EXCP_SDOOR_HV
POWERPC_EXCP_SYSCALL
POWERPC_EXCP_SYSCALL_VECTORED
POWERPC_EXCP_THERM
POWERPC_EXCP_TRACE
POWERPC_EXCP_VPU
POWERPC_EXCP_VPUA
POWERPC_EXCP_VSXU
POWERPC_EXCP_HV_MAINT
POWERPC_EXCP_SDOOR
(I added the two above that were not being considered. They used to be
"Invalid exception". Now they become "Unimplemented exception" which
is more accurate.)
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220124184605.999353-3-farosas@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The 405 Program Interrupt does not set SRR1 with any diagnostic bits,
just a clean copy of the MSR.
We're using the BookE Exception Syndrome Register which is different
from the 405.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
[ clg: restored SPR_40x_ESR settings ]
Message-Id: <20220118184448.852996-14-farosas@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The current Debug exception dispatch is the BookE one, so it is
different from the 405. We effectively don't support the 405 Debug
exception.
This patch removes the BookE code and moves the DEBUG into the "not
implemented" block.
Note that there is in theory a functional change here since we now
abort when a Debug exception happens. However, given how it was never
implemented, I don't believe this to have ever been dispatched for the
405.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20220118184448.852996-11-farosas@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Differences from the generic powerpc_excp code:
- Not BookE, so some MSR bits are cleared at interrupt dispatch;
- No MSR_HV or MSR_LE;
- No power saving states;
- No Hypervisor Emulation Assistance;
- Not 64 bits;
- No System call vectored;
- No Interrupts Little Endian;
- No Alternate Interrupt Location.
Exceptions used:
POWERPC_EXCP_ALIGN
POWERPC_EXCP_CRITICAL
POWERPC_EXCP_DEBUG
POWERPC_EXCP_DSI
POWERPC_EXCP_DTLB
POWERPC_EXCP_EXTERNAL
POWERPC_EXCP_FIT
POWERPC_EXCP_ISI
POWERPC_EXCP_ITLB
POWERPC_EXCP_MCHECK
POWERPC_EXCP_PIT
POWERPC_EXCP_PROGRAM
POWERPC_EXCP_SYSCALL
POWERPC_EXCP_WDT
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20220118184448.852996-5-farosas@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
POWERPC_MMU_BOOKE is not a mask and should not be tested with a
bitwise AND operator.
It went unnoticed because it only impacts the 601 CPU implementation
for which we don't have a known firmware image.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20220124081609.3672341-1-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
cpu_interrupt_exittb() was introduced by commit 044897ef4a
("target/ppc: Fix system lockups caused by interrupt_request state
corruption") as a way to wrap cpu_interrupt() helper in BQL.
After that, commit 6d38666a89 ("ppc: Ignore the CPU_INTERRUPT_EXITTB
interrupt with KVM") added a condition to skip this interrupt if we're
running with KVM.
Problem is that the change made by the above commit, testing for
!kvm_enabled() at the start of cpu_interrupt_exittb():
static inline void cpu_interrupt_exittb(CPUState *cs)
{
if (!kvm_enabled()) {
return;
}
(... do cpu_interrupt(cs, CPU_INTERRUPT_EXITTB) ...)
is doing the opposite of what it intended to do. This will return
immediately if not kvm_enabled(), i.e. it's a emulated CPU, and if
kvm_enabled() it will proceed to fire CPU_INTERRUPT_EXITTB.
Fix the 'skip KVM' condition so the function is a no-op when
kvm_enabled().
CC: Greg Kurz <groug@kaod.org>
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/809
Fixes: 6d38666a89 ("ppc: Ignore the CPU_INTERRUPT_EXITTB interrupt with KVM")
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Message-Id: <20220121160841.9102-1-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
After a TLB miss exception, GPRs 0-3 must be restored on rfi.
This is managed by hreg_store_msr() which is called by do_rfi()
However, hreg_store_msr() does it if MSR[TGPR] is unset in the
passed MSR value.
The problem is that do_rfi() is given the content of SRR1 as
the value to be set in MSR, but TGPR bit is not part of SRR1
and that bit is used for something else and is sometimes set
to 1, leading to hreg_store_msr() not restoring GPRs.
So, do the same way as for POW bit, force clearing it.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Cedric Le Goater <clg@kaod.org>
Cc: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220120103824.239573-1-christophe.leroy@csgroup.eu>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Current xlen has been used in helper functions and many other places.
The computation of current xlen is not so trivial, so that we should
recompute it as little as possible.
Fortunately, xlen only changes in very seldom cases, such as exception,
misa write, mstatus write, cpu reset, migration load. So that we can only
recompute xlen in this places and cache it into CPURISCVState.
Signed-off-by: LIU Zhiwei <zhiwei_liu@c-sky.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20220120122050.41546-6-zhiwei_liu@c-sky.com
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>