Currently, when using a true R/O NVDIMM (ROM memory backend) with a label
area, the VM can easily crash QEMU by trying to write to the label area,
because the ROM memory is mmap'ed without PROT_WRITE.
[root@vm-0 ~]# ndctl disable-region region0
disabled 1 region
[root@vm-0 ~]# ndctl zero-labels nmem0
-> QEMU segfaults
Let's remember whether we have a ROM memory backend and properly
reject the write request:
[root@vm-0 ~]# ndctl disable-region region0
disabled 1 region
[root@vm-0 ~]# ndctl zero-labels nmem0
zeroed 0 nmem
In comparison, on a system with a R/W NVDIMM:
[root@vm-0 ~]# ndctl disable-region region0
disabled 1 region
[root@vm-0 ~]# ndctl zero-labels nmem0
zeroed 1 nmem
For ACPI, just return "unsupported", like if no label exists. For spapr,
return "H_P2", similar to when no label area exists.
Could we rely on the "unarmed" property? Maybe, but it looks cleaner to
only disallow what certainly cannot work.
After all "unarmed=on" primarily means: cannot accept persistent writes. In
theory, there might be setups where devices with "unarmed=on" set could
be used to host non-persistent data (temporary files, system RAM, ...); for
example, in Linux, admins can overwrite the "readonly" setting and still
write to the device -- which will work as long as we're not using ROM.
Allowing writing label data in such configurations can make sense.
Message-ID: <20230906120503.359863-2-david@redhat.com>
Fixes: dbd730e859 ("nvdimm: check -object memory-backend-file, readonly=on option")
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
In If condition, using bitwise and/or, rather than logical and/or.
The result change in AML code:
If (((Local6 == Zero) | (Arg0 != Local0)))
==>
If (((Local6 == Zero) || (Arg0 != Local0)))
If (((ObjectType (Arg3) == 0x04) & (SizeOf (Arg3) == One)))
==>
If (((ObjectType (Arg3) == 0x04) && (SizeOf (Arg3) == One)))
Fixes: 90623ebf60 ("nvdimm acpi: check UUID")
Fixes: 4568c94806 ("nvdimm acpi: save arg3 of _DSM method")
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Reviewed-by: Jingqi Liu <jingqi.liu@intel.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <20220922122155.1326543-3-robert.hu@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
it replaces error-prone pointer arithmetic for build_header() API,
with 2 calls to start and finish table creation,
which hides offsets magic from API user.
Also since acpi_table_begin() reserves space only for standard header
while previous acpi_data_push() reserved the header + 4 bytes field,
add 4 bytes 'Reserved' field into nvdimm_build_nfit() which didn't
have it.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Message-Id: <20210924122802.1455362-11-imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Qemu's ACPI table generation sets the fields OEM ID and OEM table ID
to "BOCHS " and "BXPCxxxx" where "xxxx" is replaced by the ACPI
table name.
Some games like Red Dead Redemption 2 seem to check the ACPI OEM ID
and OEM table ID for the strings "BOCHS" and "BXPC" and if they are
found, the game crashes(this may be an intentional detection
mechanism to prevent playing the game in a virtualized environment).
This patch allows you to override these default values.
The feature can be used in this manner:
qemu -machine oem-id=ABCDEF,oem-table-id=GHIJKLMN
The oem-id string can be up to 6 bytes in size, and the
oem-table-id string can be up to 8 bytes in size. If the string are
smaller than their respective sizes they will be padded with space.
If either of these parameters is not set, the current default values
will be used for the one missing.
Note that the the OEM Table ID field will not be extended with the
name of the table, but will use either the default name or the user
provided one.
This does not affect the -acpitable option (for user-defined ACPI
tables), which has precedence over -machine option.
Signed-off-by: Marian Postevca <posteuca@mutex.one>
Message-Id: <20210119003216.17637-3-posteuca@mutex.one>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
There is no "version 2" of the "Lesser" General Public License.
It is either "GPL version 2.0" or "Lesser GPL version 2.1".
This patch replaces all occurrences of "Lesser GPL version 2" with
"Lesser GPL version 2.1" in comment section.
Signed-off-by: Chetan Pant <chetan4windows@gmail.com>
Message-Id: <20201023123749.19941-1-chetan4windows@gmail.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
NVDIMMs can belong to their own proximity domains, as described by the
NFIT. In such cases, the SRAT needs to have Memory Affinity structures
in the SRAT for these NVDIMMs, otherwise Linux doesn't populate node
data structures properly during NUMA initialization. See the following
for an example failure case.
https://lore.kernel.org/linux-nvdimm/20200416225438.15208-1-vishal.l.verma@intel.com/
Introduce a new helper, nvdimm_build_srat(), and call it for both the
i386 and arm versions of 'build_srat()' to augment the SRAT with
memory affinity information for NVDIMMs.
The relevant command line options to exercise this are below. Nodes 0-1
contain CPUs and regular memory, and nodes 2-3 are the NVDIMM address
space.
-object memory-backend-ram,id=mem0,size=2048M
-numa node,nodeid=0,memdev=mem0,
-numa cpu,node-id=0,socket-id=0
-object memory-backend-ram,id=mem1,size=2048M
-numa node,nodeid=1,memdev=mem1,
-numa cpu,node-id=1,socket-id=1
-numa node,nodeid=2,
-object memory-backend-file,id=nvmem0,share,mem-path=nvdimm-0,size=16384M,align=1G
-device nvdimm,memdev=nvmem0,id=nv0,label-size=2M,node=2
-numa node,nodeid=3,
-object memory-backend-file,id=nvmem1,share,mem-path=nvdimm-1,size=16384M,align=1G
-device nvdimm,memdev=nvmem1,id=nv1,label-size=2M,node=3
Cc: Jingqi Liu <jingqi.liu@intel.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Jingqi Liu <jingqi.liu@intel.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Message-Id: <20200606000911.9896-3-vishal.l.verma@intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
the Buffer Field <= to the size of an Integer (in bits), it will
be treated as an integer. Moreover, the integer size depends on
DSDT tables revision number. If revision number is < 2, integer
size is 32 bits, otherwise it is 64 bits. Current NVDIMM common
DSM aml code (NCAL) uses CreateField() for creating DSM output
buffer. This creates an issue in arm/virt platform where DSDT
revision number is 2 and results in DSM buffer with a wrong
size(8 bytes) gets returned when actual length is < 8 bytes.
This causes guest kernel to report,
"nfit ACPI0012:00: found a zero length table '0' parsing nfit"
In order to fix this, aml code is now modified such that it builds
the DSM output buffer in a byte by byte fashion when length is
smaller than Integer size.
Suggested-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <20200421125934.14952-2-shameerali.kolothum.thodi@huawei.com>
Acked-by: Peter Maydell <peter.maydell@linaro.org>
Tested-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Description copied from Linux kernel commit from Gustavo A. R. Silva
(see [3]):
--v-- description start --v--
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to
declare variable-length types such as these ones is a flexible
array member [1], introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler
warning in case the flexible array does not occur last in the
structure, which will help us prevent some kind of undefined
behavior bugs from being unadvertenly introduced [2] to the
Linux codebase from now on.
--^-- description end --^--
Do the similar housekeeping in the QEMU codebase (which uses
C99 since commit 7be41675f7).
All these instances of code were found with the help of the
following Coccinelle script:
@@
identifier s, m, a;
type t, T;
@@
struct s {
...
t m;
- T a[0];
+ T a[];
};
@@
identifier s, m, a;
type t, T;
@@
struct s {
...
t m;
- T a[0];
+ T a[];
} QEMU_PACKED;
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=76497732932f
[3] https://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux.git/commit/?id=17642a2fbd2c1
Inspired-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Taking the address of a field in a packed struct is a bad idea, because
it might not be actually aligned enough for that pointer type (and
thus cause a crash on dereference on some host architectures). Newer
versions of clang warn about this. Avoid the bug by not using the
"modify in place" byte swapping functions.
Patch produced with scripts/coccinelle/inplace-byteswaps.cocci.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Message-id: 20181016175236.5840-1-peter.maydell@linaro.org
Replace the "nvdimm-cap" option which took numeric arguments such as "2"
with a more user friendly "nvdimm-persistence" option which takes symbolic
arguments "cpu" or "mem-ctrl".
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Michael S. Tsirkin <mst@redhat.com>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Add a machine command line option to allow the user to control the Platform
Capabilities Structure in the virtualized NFIT. This Platform Capabilities
Structure was added in ACPI 6.2 Errata A.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Currently the only vNVDIMM backend can guarantee the guest write
persistence is device DAX on Linux, because no host-side kernel cache
is involved in the guest access to it. The approach to detect whether
the backend is device DAX needs to access sysfs, which may not work
with SELinux.
Instead, we add the 'unarmed' option to device 'nvdimm', so that users
or management utils, which have enough knowledge about the backend,
can control the unarmed flag in guest ACPI NFIT via this option. The
guest Linux NVDIMM driver, for example, will mark the corresponding
vNVDIMM device read-only if the unarmed flag in guest NFIT is set.
The default value of 'unarmed' option is 'off' in order to keep the
backwards compatibility.
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Message-Id: <20171211072806.2812-4-haozhong.zhang@intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Per ACPI 6.2, section 5.2.25.6 and JEDEC Annex L Release 3, the
current region format interface code 0x201 indicates the block
addressed function interface 1, rather than a byte addressable
interface. Fix it by using 0x301 which indicates the byte addressable
no energy backed function interface 1.
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
To make the code more clearer, we
1) check ram_slots first, and build ssdt & nfit only when it is available
2) use nvdimm_get_plugged_device_list() to check if there is nvdimm device
plugged
Suggested-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Commit 35c5a52d "acpi: do not use TARGET_PAGE_SIZE" changed struct
NvdimmDsmIn from a variable-size structure to a fixed-size structure of
4096 bytes. It forgot to adjust an assert in
nvdimm_dsm_set_label_data(..., NvdimmDsmIn *in, ...):
assert(sizeof(*in) + sizeof(*set_label_data) + set_label_data->length <=
4096);
which could crash QEMU when guest writes NVDIMM labels.
Fix it by replacing sizeof(*in) by offsetof(NvdimmDsmIn, arg3).
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
_FIT is required for hotplug support, guest will inquire the updated
device info from it if a hotplug event is received
As FIT buffer is not completely mapped into guest address space, so a
new function, Read FIT whose UUID is UUID
648B9CF2-CDA1-4312-8AD9-49C4AF32BD62, handle 0x10000, function index
is 0x1, is reserved by QEMU to read the piece of FIT buffer. The buffer
is concatenated before _FIT return
Refer to docs/specs/acpi-nvdimm.txt for detailed design
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
The buffer is used to save the FIT info for all the presented nvdimm
devices which is updated after the nvdimm device is plugged or
unplugged. In the later patch, it will be used to construct NVDIMM
ACPI _FIT method which reflects the presented nvdimm devices after
nvdimm hotplug
As FIT buffer can not completely mapped into guest address space,
OSPM will exit to QEMU multiple times, however, there is the race
condition - FIT may be changed during these multiple exits, so that
some rules are introduced:
1) the user should hold the @lock to access the buffer and
2) mark @dirty whenever the buffer is updated.
@dirty is cleared for the first time OSPM gets fit buffer, if
dirty is detected in the later access, OSPM will restart the
access
As fit should be updated after nvdimm device is successfully realized
so that a new hotplug callback, post_hotplug, is introduced
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
For each NVDIMM present or intended to be supported by platform,
platform firmware also exposes an ACPI Namespace Device under
the root device
So it builds nvdimm devices for all slots to support vNVDIMM hotplug
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>