Refactor resampling and virtual device

This commit is contained in:
mii443
2024-02-15 15:04:30 +09:00
parent 9ca9316342
commit 2a8d08a48e
3 changed files with 58 additions and 56 deletions

View File

@ -1,28 +1,18 @@
use rubato::{
Resampler, SincFixedIn, SincInterpolationParameters, SincInterpolationType, WindowFunction,
};
use rubato::{FastFixedIn, PolynomialDegree, Resampler};
#[inline]
pub fn resampling(
current_sample_rate: u32,
target_sample_rate: u32,
data: Vec<Vec<f32>>,
) -> Vec<Vec<f32>> {
let params = SincInterpolationParameters {
sinc_len: 8,
f_cutoff: 0.95,
interpolation: SincInterpolationType::Linear,
oversampling_factor: 64,
window: WindowFunction::Hann2,
};
let mut resampler = SincFixedIn::<f32>::new(
let mut resampler = FastFixedIn::<f32>::new(
current_sample_rate as f64 / target_sample_rate as f64,
2.0,
params,
PolynomialDegree::Cubic,
data[0].len(),
data.len(),
)
.unwrap();
resampler.process(&data, None).unwrap()
}

View File

@ -239,6 +239,8 @@ pub fn run(run: Run) {
}
}
std::thread::sleep(std::time::Duration::from_millis(500));
for output_route in &config.routes.output {
match &output_route.device {
crate::config::Device::Local { local } => {
@ -259,7 +261,7 @@ pub fn run(run: Run) {
.cloned()
.collect::<Vec<_>>()[0]
.clone();
let index = virtual_device.lock().unwrap().add_output();
let index = virtual_device.lock().unwrap().add_output(sample_rate);
let stream = match config.sample_format() {
cpal::SampleFormat::I8 => device.build_output_stream(
@ -357,11 +359,6 @@ fn input_callback<T>(
{
let data: Vec<f32> = data.iter().map(|d| d.to_f32().unwrap()).collect();
let audio_data = reshape_audio_data(&data, channels);
let audio_data = crate::audio::resampling::resampling(
sample_rate,
virtual_device.lock().unwrap().sample_rate,
audio_data,
);
virtual_device
.lock()
.unwrap()
@ -379,16 +376,17 @@ fn output_callback<T>(
{
let mut virtual_device = virtual_device.lock().unwrap();
let vd_channels = virtual_device.channels;
let mut audio_data = virtual_device
.take_output(
index,
min(channels as u8, vd_channels),
data.len() / channels,
)
.unwrap_or(vec![vec![0.; data.len() / channels]; channels]);
let audio_data =
crate::audio::resampling::resampling(virtual_device.sample_rate, sample_rate, audio_data);
let mut audio_data = to_flat_audio_data(&audio_data);
let audio_data = virtual_device.take_output(
index,
min(channels as u8, vd_channels),
sample_rate,
data.len() / channels,
);
if audio_data.is_none() {
println!("audio_data is none");
return;
}
let mut audio_data = to_flat_audio_data(&audio_data.unwrap());
let data_len = data.len();
let audio_data_len = audio_data.len();

View File

@ -1,9 +1,14 @@
use std::collections::HashMap;
use crate::audio::resampling::resampling;
pub struct VirtualDevice {
pub name: String,
pub channels: u8,
pub sample_rate: u32,
output_index: Vec<usize>,
output_buffer: Vec<Vec<f32>>,
output_index: HashMap<u32, Vec<usize>>,
output_buffer: HashMap<u32, Vec<Vec<f32>>>,
}
impl VirtualDevice {
@ -12,68 +17,77 @@ impl VirtualDevice {
name,
channels,
sample_rate,
output_index: Vec::new(),
output_buffer: vec![vec![]; channels as usize],
output_index: HashMap::new(),
output_buffer: HashMap::new(),
}
}
#[inline]
fn get_min_index(&self) -> usize {
*self.output_index.iter().min().unwrap_or(&0)
fn get_min_index(&self, sample_rate: u32) -> usize {
*self.output_index[&sample_rate].iter().min().unwrap_or(&0)
}
pub fn add_output(&mut self) -> usize {
self.output_index.push(self.get_min_index());
self.output_index.len() - 1
pub fn add_output(&mut self, sample_rate: u32) -> usize {
if let std::collections::hash_map::Entry::Vacant(e) = self.output_index.entry(sample_rate) {
e.insert(Vec::new());
self.output_buffer
.insert(sample_rate, vec![vec![]; self.channels as usize]);
}
let min_index = self.get_min_index(sample_rate);
self.output_index
.get_mut(&sample_rate)
.unwrap()
.push(min_index);
self.output_index[&sample_rate].len() - 1
}
pub fn take_output(
&mut self,
index: usize,
channels: u8,
sample_rate: u32,
take_size: usize,
) -> Option<Vec<Vec<f32>>> {
let mut buffer = vec![Vec::with_capacity(take_size); channels as usize];
let start = self.output_index[index];
let start = self.output_index[&sample_rate][index];
let end = start + take_size;
for channel in 0..channels {
if end > self.output_buffer[channel as usize].len() {
if end > self.output_buffer[&sample_rate][channel as usize].len() {
return None;
}
if start >= self.output_buffer[channel as usize].len() {
if start >= self.output_buffer[&sample_rate][channel as usize].len() {
return None;
}
}
for i in start..end {
for channel in 0..channels {
buffer[channel as usize].push(self.output_buffer[channel as usize][i]);
buffer[channel as usize]
.push(self.output_buffer[&sample_rate][channel as usize][i]);
}
}
self.output_index[index] = end;
self.output_index.get_mut(&sample_rate).unwrap()[index] = end;
let min = self.get_min_index();
let min = self.get_min_index(sample_rate);
if min != 0 {
for i in 0..self.channels as usize {
let len = self.output_buffer[i].len();
self.output_buffer[i].drain(0..(if len < min { len } else { min }));
let len = self.output_buffer[&sample_rate][i].len();
self.output_buffer.get_mut(&sample_rate).unwrap()[i]
.drain(0..(if len < min { len } else { min }));
}
for i in 0..self.output_index.len() {
self.output_index[i] -= min;
self.output_index.get_mut(&sample_rate).unwrap()[i] -= min;
}
}
Some(buffer)
}
pub fn write_input_multiple_channels(&mut self, buffer: &[Vec<f32>]) {
(0..self.channels as usize).for_each(|i| {
self.output_buffer[i].extend(buffer[i].iter());
});
}
pub fn write_input(&mut self, channel: u8, buffer: Vec<f32>) {
self.output_buffer[channel as usize].extend(buffer);
pub fn write_input_multiple_channels(&mut self, input_buffer: &[Vec<f32>]) {
for (sample_rate, buffer) in self.output_buffer.iter_mut() {
let buffer_resample = resampling(self.sample_rate, *sample_rate, input_buffer.to_vec());
(0..self.channels as usize).for_each(|i| buffer[i].extend(buffer_resample[i].iter()));
}
}
}