#include "ggml.h" #include "utils.h" #include #include #include #include #include #include #include #include #include #include #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) #include #include #elif defined(_WIN32) #include #endif #define ANSI_COLOR_RED "\x1b[31m" #define ANSI_COLOR_GREEN "\x1b[32m" #define ANSI_COLOR_YELLOW "\x1b[33m" #define ANSI_COLOR_BLUE "\x1b[34m" #define ANSI_COLOR_MAGENTA "\x1b[35m" #define ANSI_COLOR_CYAN "\x1b[36m" #define ANSI_COLOR_RESET "\x1b[0m" #define ANSI_BOLD "\x1b[1m" // determine number of model parts based on the dimension static const std::map LLAMA_N_PARTS = { {4096, 1}, {5120, 2}, {6656, 4}, {8192, 8}, }; // default hparams (LLaMA 7B) struct llama_hparams { int32_t n_vocab = 32000; int32_t n_ctx = 512; // this is provided as user input? int32_t n_embd = 4096; int32_t n_mult = 256; int32_t n_head = 32; int32_t n_layer = 32; int32_t n_rot = 64; int32_t f16 = 1; }; struct llama_layer { // normalization struct ggml_tensor *attention_norm; // attention struct ggml_tensor *wq; struct ggml_tensor *wk; struct ggml_tensor *wv; struct ggml_tensor *wo; // normalization struct ggml_tensor *ffn_norm; // ff struct ggml_tensor *w1; struct ggml_tensor *w2; struct ggml_tensor *w3; }; struct llama_model { llama_hparams hparams; struct ggml_tensor *tok_embeddings; struct ggml_tensor *norm; struct ggml_tensor *output; std::vector layers; // key + value memory struct ggml_tensor *memory_k; struct ggml_tensor *memory_v; // struct ggml_context *ctx; std::map tensors; }; // load the model's weights from a file bool llama_model_load(const std::string &fname, llama_model &model, gpt_vocab &vocab, int n_ctx) { fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); std::vector f_buf(1024 * 1024); auto fin = std::ifstream(fname, std::ios::binary); fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size()); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return false; } // verify magic { uint32_t magic; fin.read((char *)&magic, sizeof(magic)); if (magic != 0x67676d6c) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return false; } } int n_ff = 0; int n_parts = 0; // load hparams { auto &hparams = model.hparams; fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab)); // fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); fin.read((char *)&hparams.n_embd, sizeof(hparams.n_embd)); fin.read((char *)&hparams.n_mult, sizeof(hparams.n_mult)); fin.read((char *)&hparams.n_head, sizeof(hparams.n_head)); fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer)); fin.read((char *)&hparams.n_rot, sizeof(hparams.n_rot)); fin.read((char *)&hparams.f16, sizeof(hparams.f16)); hparams.n_ctx = n_ctx; n_ff = ((2 * (4 * hparams.n_embd) / 3 + hparams.n_mult - 1) / hparams.n_mult) * hparams.n_mult; n_parts = LLAMA_N_PARTS.at(hparams.n_embd); fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab); fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx); fprintf(stderr, "%s: n_embd = %d\n", __func__, hparams.n_embd); fprintf(stderr, "%s: n_mult = %d\n", __func__, hparams.n_mult); fprintf(stderr, "%s: n_head = %d\n", __func__, hparams.n_head); fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer); fprintf(stderr, "%s: n_rot = %d\n", __func__, hparams.n_rot); fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16); fprintf(stderr, "%s: n_ff = %d\n", __func__, n_ff); fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts); } // load vocab { const int32_t n_vocab = model.hparams.n_vocab; if (n_vocab != model.hparams.n_vocab) { fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); return false; } std::string word; for (int i = 0; i < n_vocab; i++) { uint32_t len; fin.read((char *)&len, sizeof(len)); word.resize(len); fin.read((char *)word.data(), len); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; // if (i < 30000) { // fprintf(stderr, "%s: vocab[%d] = '%s'\n", __func__, i, // word.c_str()); //} } } // for the big tensors, we have the option to store the data in 16-bit floats // or quantized in order to save memory and also to speed up the computation ggml_type wtype = GGML_TYPE_COUNT; switch (model.hparams.f16) { case 0: wtype = GGML_TYPE_F32; break; case 1: wtype = GGML_TYPE_F16; break; case 2: wtype = GGML_TYPE_Q4_0; break; case 3: wtype = GGML_TYPE_Q4_1; break; default: { fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n", __func__, fname.c_str(), model.hparams.f16); return false; } } const ggml_type wtype2 = GGML_TYPE_F32; auto &ctx = model.ctx; size_t ctx_size = 0; { const auto &hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // tok_embeddings ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // norm ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // output ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // attention_norm ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // wq ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // wk ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // wv ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // wo ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm ctx_size += n_layer * (n_ff * n_embd * ggml_type_sizef(wtype)); // w1 ctx_size += n_layer * (n_ff * n_embd * ggml_type_sizef(wtype)); // w2 ctx_size += n_layer * (n_ff * n_embd * ggml_type_sizef(wtype)); // w3 ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F32); // memory_k ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F32); // memory_v ctx_size += (5 + 10 * n_layer) * 256; // object overhead fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0)); } // create the ggml context { struct ggml_init_params params = { /*.mem_size =*/ctx_size, /*.mem_buffer =*/NULL, }; model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // prepare memory for the weights { const auto &hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; model.layers.resize(n_layer); model.tok_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.output = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); // map by name model.tensors["tok_embeddings.weight"] = model.tok_embeddings; model.tensors["norm.weight"] = model.norm; model.tensors["output.weight"] = model.output; for (int i = 0; i < n_layer; ++i) { auto &layer = model.layers[i]; layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff); layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd); layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff); // map by name model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm; model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq; model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk; model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv; model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo; model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm; model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1; model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2; model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3; } } // key + value memory { const auto &hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_mem = n_layer * n_ctx; const int n_elements = n_embd * n_mem; model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size / 1024.0 / 1024.0, n_mem); } const size_t file_offset = fin.tellg(); fin.close(); std::vector tmp; for (int i = 0; i < n_parts; ++i) { const int part_id = i; // const int part_id = n_parts - i - 1; std::string fname_part = fname; if (i > 0) { fname_part += "." + std::to_string(i); } fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i + 1, n_parts, fname_part.c_str()); fin = std::ifstream(fname_part, std::ios::binary); fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size()); fin.seekg(file_offset); // load weights { int n_tensors = 0; size_t total_size = 0; fprintf(stderr, "%s: ", __func__); while (true) { int32_t n_dims; int32_t length; int32_t ftype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ftype), sizeof(ftype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = {1, 1}; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); if (model.tensors.find(name.data()) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); return false; } // split_type = 0: split by columns // split_type = 1: split by rows int split_type = 0; // split_type = 0: // regex: // - tok_embeddings.* // - layers.*.attention.wo.weight // - layers.*.feed_forward.w2.weight // split_type = 1: // regex: // - output.* // - layers.*.attention.wq.weight // - layers.*.attention.wk.weight // - layers.*.attention.wv.weight // - layers.*.feed_forward.w1.weight // - layers.*.feed_forward.w3.weight if (name.find("tok_embeddings") != std::string::npos) { split_type = 0; } else if (name.find("layers") != std::string::npos) { if (name.find("attention.wo.weight") != std::string::npos) { split_type = 0; } else if (name.find("feed_forward.w2.weight") != std::string::npos) { split_type = 0; } else { split_type = 1; } } else if (name.find("output") != std::string::npos) { split_type = 1; } auto tensor = model.tensors[name.data()]; if (n_dims == 1) { if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return false; } } else { if (ggml_nelements(tensor) / n_parts != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return false; } } if (n_dims == 1) { if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, " "%d], expected [%d, %d]\n", __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]); return false; } } else { if (split_type == 0) { if (tensor->ne[0] / n_parts != ne[0] || tensor->ne[1] != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, " "%d], expected [%d, %d]\n", __func__, name.data(), tensor->ne[0] / n_parts, tensor->ne[1], ne[0], ne[1]); return false; } } else { if (tensor->ne[0] != ne[0] || tensor->ne[1] / n_parts != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, " "%d], expected [%d, %d]\n", __func__, name.data(), tensor->ne[0], tensor->ne[1] / n_parts, ne[0], ne[1]); return false; } } } if (0) { static const char *ftype_str[] = { "f32", "f16", "q4_0", "q4_1", }; fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type); } size_t bpe = 0; switch (ftype) { case 0: bpe = ggml_type_size(GGML_TYPE_F32); break; case 1: bpe = ggml_type_size(GGML_TYPE_F16); break; case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break; case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break; default: { fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype); return false; } }; if (n_dims == 1 || n_parts == 1) { if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, " "expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements * bpe); return false; } if (part_id == 0) { fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); } else { fin.seekg(ggml_nbytes(tensor), std::ios::cur); } total_size += ggml_nbytes(tensor); } else { if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor) / n_parts) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, " "expected %zu\n", __func__, name.data(), ggml_nbytes(tensor) / n_parts, nelements * bpe); return false; } if (split_type == 0) { const int np0 = ne[0]; const size_t row_size = (tensor->ne[0] / ggml_blck_size(tensor->type)) * ggml_type_size(tensor->type); assert(row_size == tensor->nb[1]); for (int i1 = 0; i1 < ne[1]; ++i1) { const size_t offset_row = i1 * row_size; const size_t offset = offset_row + ((part_id * np0) / ggml_blck_size(tensor->type)) * ggml_type_size(tensor->type); fin.read(reinterpret_cast(tensor->data) + offset, row_size / n_parts); } } else { const int np1 = ne[1]; const size_t row_size = (tensor->ne[0] / ggml_blck_size(tensor->type)) * ggml_type_size(tensor->type); for (int i1 = 0; i1 < ne[1]; ++i1) { const size_t offset_row = (i1 + part_id * np1) * row_size; fin.read(reinterpret_cast(tensor->data) + offset_row, row_size); } } total_size += ggml_nbytes(tensor) / n_parts; } // fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", // name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", // ggml_nbytes(tensor)/1024.0/1024.0); if (++n_tensors % 8 == 0) { fprintf(stderr, "."); fflush(stderr); } } fprintf(stderr, " done\n"); fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors); } fin.close(); } return true; } // evaluate the transformer // // - model: the model // - n_threads: number of threads to use // - n_past: the context size so far // - embd_inp: the embeddings of the tokens in the context // - embd_w: the predicted logits for the next token // // The GPT-J model requires about 16MB of memory per input token. // bool llama_eval(const llama_model &model, const int n_threads, const int n_past, const std::vector &embd_inp, std::vector &embd_w, size_t &mem_per_token) { const int N = embd_inp.size(); const auto &hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_embd / hparams.n_head; const int d_key = n_embd / n_head; // TODO: check if this size scales with n_ctx linearly and remove constant. // somehow I feel it wasn't the case // static size_t buf_size = hparams.n_ctx*1024*1024; static size_t buf_size = 512u * 1024 * 1024; static void *buf = malloc(buf_size); if (mem_per_token > 0 && mem_per_token * N > buf_size) { const size_t buf_size_new = 1.1 * (mem_per_token * N); // add 10% to account for ggml object overhead // fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", // __func__, buf_size, buf_size_new); // reallocate buf_size = buf_size_new; buf = realloc(buf, buf_size); if (buf == nullptr) { fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); return false; } } struct ggml_init_params params = { /*.mem_size =*/buf_size, /*.mem_buffer =*/buf, }; struct ggml_context *ctx0 = ggml_init(params); ggml_cgraph gf = {}; gf.n_threads = n_threads; struct ggml_tensor *embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd)); struct ggml_tensor *inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor *inpSA = inpL; struct ggml_tensor *cur; // norm { cur = ggml_rms_norm(ctx0, inpL); // cur = attention_norm*cur cur = ggml_mul( ctx0, ggml_repeat(ctx0, model.layers[il].attention_norm, cur), cur); } // self-attention { struct ggml_tensor *Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); struct ggml_tensor *Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); struct ggml_tensor *Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); // store key and value to memory if (N >= 1) { struct ggml_tensor *k = ggml_view_1d(ctx0, model.memory_k, N * n_embd, (ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past)); struct ggml_tensor *v = ggml_view_1d(ctx0, model.memory_v, N * n_embd, (ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, // 3) struct ggml_tensor *Q = ggml_permute(ctx0, ggml_rope(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), n_past, n_rot, 0), 0, 2, 1, 3); // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) struct ggml_tensor *K = ggml_permute(ctx0, ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.memory_k) * n_embd), n_embd / n_head, n_head, n_past + N), n_past, n_rot, 1), 0, 2, 1, 3); // K * Q struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor *KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head))); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor *KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor *KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, // 3).contiguous() struct ggml_tensor *V_trans = ggml_permute( ctx0, ggml_reshape_3d( ctx0, ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.memory_v) * n_embd), n_embd / n_head, n_head, n_past + N), 1, 2, 0, 3); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor *KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); } struct ggml_tensor *inpFF = ggml_add(ctx0, cur, inpSA); // feed-forward network { // norm { cur = ggml_rms_norm(ctx0, inpFF); // cur = ffn_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ffn_norm, cur), cur); } struct ggml_tensor *tmp = ggml_mul_mat(ctx0, model.layers[il].w3, cur); cur = ggml_mul_mat(ctx0, model.layers[il].w1, cur); // SILU activation cur = ggml_silu(ctx0, cur); cur = ggml_mul(ctx0, cur, tmp); cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); } cur = ggml_add(ctx0, cur, inpFF); // input for next layer inpL = cur; } // norm { inpL = ggml_rms_norm(ctx0, inpL); // inpL = norm*inpL inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm, inpL), inpL); } // lm_head { inpL = ggml_mul_mat(ctx0, model.output, inpL); } // logits -> probs // inpL = ggml_soft_max(ctx0, inpL); // run the computation ggml_build_forward_expand(&gf, inpL); ggml_graph_compute(ctx0, &gf); // if (n_past%100 == 0) { // ggml_graph_print (&gf); // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); //} // embd_w.resize(n_vocab*N); // memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); // return result for just the last token embd_w.resize(n_vocab); memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab); if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0) / N; } // fprintf(stderr, "used_mem = %zu\n", ggml_used_mem(ctx0)); ggml_free(ctx0); return true; } static bool is_interacting = false; #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || \ defined(_WIN32) void sigint_handler(int signo) { printf(ANSI_COLOR_RESET); if (signo == SIGINT) { if (!is_interacting) { is_interacting = true; } else { _exit(130); } } } #endif const char *llama_print_system_info(void) { static std::string s; s = ""; s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; return s.c_str(); } int main(int argc, char **argv) { ggml_time_init(); const int64_t t_main_start_us = ggml_time_us(); gpt_params params; params.model = "models/7B/ggml-model.bin"; if (gpt_params_parse(argc, argv, params) == false) { return 1; } if (params.seed < 0) { params.seed = time(NULL); } fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.prompt.empty()) { params.prompt = gpt_random_prompt(rng); } // params.prompt = R"(// this function checks if the number n is prime // bool is_prime(int n) {)"; int64_t t_load_us = 0; gpt_vocab vocab; llama_model model; // load the model { const int64_t t_start_us = ggml_time_us(); if (!llama_model_load(params.model, model, vocab, params.n_ctx)) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return 1; } t_load_us = ggml_time_us() - t_start_us; } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); } printf("Initializing crow..."); crow::SimpleApp app; CROW_ROUTE(app, "/")([&](const crow::request& req) -> std::string { nlohmann::json json_data = nlohmann::json::parse(req.body); std::string input = "Transcript of a dialog, where the User interacts with an Assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision.\n"; auto messages = json_data["messages"]; for (auto& message : messages) { std::string role = message["role"]; std::string content = message["content"]; if (role == "user") { input = input + "\nUser: " + content; } else { input = input + "\nBob: " + content; } } input = input + "\nBob: "; std::string result = ""; int n_past = 0; int64_t t_sample_us = 0; int64_t t_predict_us = 0; std::vector logits; // tokenize the prompt std::vector embd_inp = ::llama_tokenize(vocab, input, true); params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int)embd_inp.size()); // tokenize the reverse prompt std::vector antiprompt_inp = ::llama_tokenize(vocab, params.antiprompt, false); fprintf(stderr, "\n"); fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str()); fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); for (int i = 0; i < (int)embd_inp.size(); i++) { fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str()); } fprintf(stderr, "\n"); if (params.interactive) { #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) struct sigaction sigint_action; sigint_action.sa_handler = sigint_handler; sigemptyset(&sigint_action.sa_mask); sigint_action.sa_flags = 0; sigaction(SIGINT, &sigint_action, NULL); #elif defined(_WIN32) signal(SIGINT, sigint_handler); #endif fprintf(stderr, "%s: interactive mode on.\n", __func__); if (antiprompt_inp.size()) { fprintf(stderr, "%s: reverse prompt: '%s'\n", __func__, params.antiprompt.c_str()); fprintf(stderr, "%s: number of tokens in reverse prompt = %zu\n", __func__, antiprompt_inp.size()); for (int i = 0; i < (int)antiprompt_inp.size(); i++) { fprintf(stderr, "%6d -> '%s'\n", antiprompt_inp[i], vocab.id_to_token.at(antiprompt_inp[i]).c_str()); } fprintf(stderr, "\n"); } } fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, " "repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty); fprintf(stderr, "\n\n"); std::vector embd; // determine the required inference memory per token: size_t mem_per_token = 0; llama_eval(model, params.n_threads, 0, {0, 1, 2, 3}, logits, mem_per_token); int last_n_size = params.repeat_last_n; std::vector last_n_tokens(last_n_size); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); if (params.interactive) { fprintf(stderr, "== Running in interactive mode. ==\n" #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || \ defined(_WIN32) " - Press Ctrl+C to interject at any time.\n" #endif " - Press Return to return control to LLaMa.\n" " - If you want to submit another line, end your input in '\\'.\n"); } int remaining_tokens = params.n_predict; int input_consumed = 0; bool input_noecho = false; // prompt user immediately after the starting prompt has been loaded if (params.interactive_start) { is_interacting = true; } // set the color for the prompt which will be output initially if (params.use_color) { printf(ANSI_COLOR_YELLOW); } while (remaining_tokens > 0) { // predict if (embd.size() > 0) { const int64_t t_start_us = ggml_time_us(); if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) { fprintf(stderr, "Failed to predict\n"); return std::string("Failed to predict"); } t_predict_us += ggml_time_us() - t_start_us; } n_past += embd.size(); embd.clear(); if (embd_inp.size() <= input_consumed) { // out of user input, sample next token const float top_k = params.top_k; const float top_p = params.top_p; const float temp = params.temp; const float repeat_penalty = params.repeat_penalty; const int n_vocab = model.hparams.n_vocab; gpt_vocab::id id = 0; { const int64_t t_start_sample_us = ggml_time_us(); id = llama_sample_top_p_top_k( vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(id); t_sample_us += ggml_time_us() - t_start_sample_us; } // add it to the context embd.push_back(id); // echo this to console input_noecho = false; } else { // some user input remains from prompt or interaction, forward it to // processing while (embd_inp.size() > input_consumed) { embd.push_back(embd_inp[input_consumed]); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(embd_inp[input_consumed]); ++input_consumed; if (embd.size() > params.n_batch) { break; } } // reset color to default if we there is no pending user input if (!input_noecho && params.use_color && embd_inp.size() == input_consumed) { printf(ANSI_COLOR_RESET); } } // in interactive mode, and not currently processing queued inputs; // check if we should prompt the user for more if (params.interactive && embd_inp.size() <= input_consumed) { // check for reverse prompt if (antiprompt_inp.size() && std::equal(antiprompt_inp.rbegin(), antiprompt_inp.rend(), last_n_tokens.rbegin())) { // reverse prompt found printf("Reverse prompt found.\n"); result.erase(result.size() - 4); is_interacting = true; } if (is_interacting) { is_interacting = false; break; } } // display text if (!input_noecho) { for (auto id : embd) { result = result + vocab.id_to_token[id].c_str(); printf("%s", vocab.id_to_token[id].c_str()); } fflush(stdout); } // end of text token if (embd.back() == 2) { fprintf(stderr, " [end of text]\n"); break; } } #if defined(_WIN32) signal(SIGINT, SIG_DFL); #endif // report timing { const int64_t t_main_end_us = ggml_time_us(); fprintf(stderr, "\n\n"); fprintf(stderr, "%s: mem per token = %8zu bytes\n", __func__, mem_per_token); fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, t_load_us / 1000.0f); fprintf(stderr, "%s: sample time = %8.2f ms\n", __func__, t_sample_us / 1000.0f); fprintf(stderr, "%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us / 1000.0f, t_predict_us / 1000.0f / n_past); fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f); } return result.substr(input.length()); }); app.port(18080).multithreaded().run(); ggml_free(model.ctx); if (params.use_color) { printf(ANSI_COLOR_RESET); } return 0; }