mirror of
https://github.com/mii443/llama.cpp.git
synced 2025-08-22 15:05:34 +00:00
support API call
This commit is contained in:
468
main.cpp
468
main.cpp
@ -11,6 +11,9 @@
|
|||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
|
#include <crow.h>
|
||||||
|
#include <json.hpp>
|
||||||
|
|
||||||
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
|
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
|
||||||
#include <signal.h>
|
#include <signal.h>
|
||||||
#include <unistd.h>
|
#include <unistd.h>
|
||||||
@ -86,8 +89,10 @@ struct llama_model {
|
|||||||
};
|
};
|
||||||
|
|
||||||
// load the model's weights from a file
|
// load the model's weights from a file
|
||||||
bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab & vocab, int n_ctx) {
|
bool llama_model_load(const std::string &fname, llama_model &model,
|
||||||
fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
|
gpt_vocab &vocab, int n_ctx) {
|
||||||
|
fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__,
|
||||||
|
fname.c_str());
|
||||||
|
|
||||||
std::vector<char> f_buf(1024 * 1024);
|
std::vector<char> f_buf(1024 * 1024);
|
||||||
|
|
||||||
@ -103,7 +108,8 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
uint32_t magic;
|
uint32_t magic;
|
||||||
fin.read((char *)&magic, sizeof(magic));
|
fin.read((char *)&magic, sizeof(magic));
|
||||||
if (magic != 0x67676d6c) {
|
if (magic != 0x67676d6c) {
|
||||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__,
|
||||||
|
fname.c_str());
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -126,7 +132,9 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
|
|
||||||
hparams.n_ctx = n_ctx;
|
hparams.n_ctx = n_ctx;
|
||||||
|
|
||||||
n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
|
n_ff =
|
||||||
|
((2 * (4 * hparams.n_embd) / 3 + hparams.n_mult - 1) / hparams.n_mult) *
|
||||||
|
hparams.n_mult;
|
||||||
n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
|
n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
|
||||||
|
|
||||||
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||||
@ -163,21 +171,29 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
vocab.id_to_token[i] = word;
|
vocab.id_to_token[i] = word;
|
||||||
|
|
||||||
// if (i < 30000) {
|
// if (i < 30000) {
|
||||||
// fprintf(stderr, "%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
|
// fprintf(stderr, "%s: vocab[%d] = '%s'\n", __func__, i,
|
||||||
|
// word.c_str());
|
||||||
//}
|
//}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
// for the big tensors, we have the option to store the data in 16-bit floats
|
||||||
// in order to save memory and also to speed up the computation
|
// or quantized in order to save memory and also to speed up the computation
|
||||||
ggml_type wtype = GGML_TYPE_COUNT;
|
ggml_type wtype = GGML_TYPE_COUNT;
|
||||||
switch (model.hparams.f16) {
|
switch (model.hparams.f16) {
|
||||||
case 0: wtype = GGML_TYPE_F32; break;
|
case 0:
|
||||||
case 1: wtype = GGML_TYPE_F16; break;
|
wtype = GGML_TYPE_F32;
|
||||||
case 2: wtype = GGML_TYPE_Q4_0; break;
|
break;
|
||||||
case 3: wtype = GGML_TYPE_Q4_1; break;
|
case 1:
|
||||||
default:
|
wtype = GGML_TYPE_F16;
|
||||||
{
|
break;
|
||||||
|
case 2:
|
||||||
|
wtype = GGML_TYPE_Q4_0;
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
wtype = GGML_TYPE_Q4_1;
|
||||||
|
break;
|
||||||
|
default: {
|
||||||
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
|
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
|
||||||
__func__, fname.c_str(), model.hparams.f16);
|
__func__, fname.c_str(), model.hparams.f16);
|
||||||
return false;
|
return false;
|
||||||
@ -204,7 +220,8 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
|
|
||||||
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // output
|
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // output
|
||||||
|
|
||||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
|
ctx_size +=
|
||||||
|
n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
|
||||||
|
|
||||||
ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // wq
|
ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // wq
|
||||||
ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // wk
|
ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // wk
|
||||||
@ -217,12 +234,15 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
ctx_size += n_layer * (n_ff * n_embd * ggml_type_sizef(wtype)); // w2
|
ctx_size += n_layer * (n_ff * n_embd * ggml_type_sizef(wtype)); // w2
|
||||||
ctx_size += n_layer * (n_ff * n_embd * ggml_type_sizef(wtype)); // w3
|
ctx_size += n_layer * (n_ff * n_embd * ggml_type_sizef(wtype)); // w3
|
||||||
|
|
||||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
|
ctx_size +=
|
||||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
|
n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F32); // memory_k
|
||||||
|
ctx_size +=
|
||||||
|
n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F32); // memory_v
|
||||||
|
|
||||||
ctx_size += (5 + 10 * n_layer) * 256; // object overhead
|
ctx_size += (5 + 10 * n_layer) * 256; // object overhead
|
||||||
|
|
||||||
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__,
|
||||||
|
ctx_size / (1024.0 * 1024.0));
|
||||||
}
|
}
|
||||||
|
|
||||||
// create the ggml context
|
// create the ggml context
|
||||||
@ -278,18 +298,27 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
|
layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
|
||||||
|
|
||||||
// map by name
|
// map by name
|
||||||
model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
|
model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] =
|
||||||
|
layer.attention_norm;
|
||||||
|
|
||||||
model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
|
model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] =
|
||||||
model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
|
layer.wq;
|
||||||
model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
|
model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] =
|
||||||
model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
|
layer.wk;
|
||||||
|
model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] =
|
||||||
|
layer.wv;
|
||||||
|
model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] =
|
||||||
|
layer.wo;
|
||||||
|
|
||||||
model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
|
model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] =
|
||||||
|
layer.ffn_norm;
|
||||||
|
|
||||||
model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
|
model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] =
|
||||||
model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
|
layer.w1;
|
||||||
model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
|
model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] =
|
||||||
|
layer.w2;
|
||||||
|
model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] =
|
||||||
|
layer.w3;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -307,9 +336,11 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||||
|
|
||||||
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
const size_t memory_size =
|
||||||
|
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
||||||
|
|
||||||
fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
|
fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__,
|
||||||
|
memory_size / 1024.0 / 1024.0, n_mem);
|
||||||
}
|
}
|
||||||
|
|
||||||
const size_t file_offset = fin.tellg();
|
const size_t file_offset = fin.tellg();
|
||||||
@ -327,7 +358,8 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
fname_part += "." + std::to_string(i);
|
fname_part += "." + std::to_string(i);
|
||||||
}
|
}
|
||||||
|
|
||||||
fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
|
fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i + 1,
|
||||||
|
n_parts, fname_part.c_str());
|
||||||
|
|
||||||
fin = std::ifstream(fname_part, std::ios::binary);
|
fin = std::ifstream(fname_part, std::ios::binary);
|
||||||
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
|
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
|
||||||
@ -364,7 +396,8 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
fin.read(&name[0], length);
|
fin.read(&name[0], length);
|
||||||
|
|
||||||
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
||||||
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__,
|
||||||
|
name.data());
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -404,61 +437,92 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
|
|
||||||
if (n_dims == 1) {
|
if (n_dims == 1) {
|
||||||
if (ggml_nelements(tensor) != nelements) {
|
if (ggml_nelements(tensor) != nelements) {
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n",
|
||||||
|
__func__, name.data());
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if (ggml_nelements(tensor) / n_parts != nelements) {
|
if (ggml_nelements(tensor) / n_parts != nelements) {
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n",
|
||||||
|
__func__, name.data());
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (n_dims == 1) {
|
if (n_dims == 1) {
|
||||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
fprintf(stderr,
|
||||||
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
"%s: tensor '%s' has wrong shape in model file: got [%d, "
|
||||||
|
"%d], expected [%d, %d]\n",
|
||||||
|
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0],
|
||||||
|
ne[1]);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if (split_type == 0) {
|
if (split_type == 0) {
|
||||||
if (tensor->ne[0] / n_parts != ne[0] || tensor->ne[1] != ne[1]) {
|
if (tensor->ne[0] / n_parts != ne[0] || tensor->ne[1] != ne[1]) {
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
fprintf(stderr,
|
||||||
__func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
|
"%s: tensor '%s' has wrong shape in model file: got [%d, "
|
||||||
|
"%d], expected [%d, %d]\n",
|
||||||
|
__func__, name.data(), tensor->ne[0] / n_parts,
|
||||||
|
tensor->ne[1], ne[0], ne[1]);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] / n_parts != ne[1]) {
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] / n_parts != ne[1]) {
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
fprintf(stderr,
|
||||||
__func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
|
"%s: tensor '%s' has wrong shape in model file: got [%d, "
|
||||||
|
"%d], expected [%d, %d]\n",
|
||||||
|
__func__, name.data(), tensor->ne[0],
|
||||||
|
tensor->ne[1] / n_parts, ne[0], ne[1]);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (0) {
|
if (0) {
|
||||||
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
static const char *ftype_str[] = {
|
||||||
fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
|
"f32",
|
||||||
|
"f16",
|
||||||
|
"q4_0",
|
||||||
|
"q4_1",
|
||||||
|
};
|
||||||
|
fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n",
|
||||||
|
name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t bpe = 0;
|
size_t bpe = 0;
|
||||||
|
|
||||||
switch (ftype) {
|
switch (ftype) {
|
||||||
case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
|
case 0:
|
||||||
case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
|
bpe = ggml_type_size(GGML_TYPE_F32);
|
||||||
case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
|
break;
|
||||||
case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
|
case 1:
|
||||||
default:
|
bpe = ggml_type_size(GGML_TYPE_F16);
|
||||||
{
|
break;
|
||||||
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
|
case 2:
|
||||||
|
bpe = ggml_type_size(GGML_TYPE_Q4_0);
|
||||||
|
assert(ne[0] % 64 == 0);
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
bpe = ggml_type_size(GGML_TYPE_Q4_1);
|
||||||
|
assert(ne[0] % 64 == 0);
|
||||||
|
break;
|
||||||
|
default: {
|
||||||
|
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__,
|
||||||
|
ftype);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
if (n_dims == 1 || n_parts == 1) {
|
if (n_dims == 1 || n_parts == 1) {
|
||||||
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
if ((nelements * bpe) / ggml_blck_size(tensor->type) !=
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
ggml_nbytes(tensor)) {
|
||||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
fprintf(stderr,
|
||||||
|
"%s: tensor '%s' has wrong size in model file: got %zu, "
|
||||||
|
"expected %zu\n",
|
||||||
|
__func__, name.data(), ggml_nbytes(tensor),
|
||||||
|
nelements * bpe);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -470,27 +534,38 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
|
|
||||||
total_size += ggml_nbytes(tensor);
|
total_size += ggml_nbytes(tensor);
|
||||||
} else {
|
} else {
|
||||||
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
|
if ((nelements * bpe) / ggml_blck_size(tensor->type) !=
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
ggml_nbytes(tensor) / n_parts) {
|
||||||
__func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
|
fprintf(stderr,
|
||||||
|
"%s: tensor '%s' has wrong size in model file: got %zu, "
|
||||||
|
"expected %zu\n",
|
||||||
|
__func__, name.data(), ggml_nbytes(tensor) / n_parts,
|
||||||
|
nelements * bpe);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (split_type == 0) {
|
if (split_type == 0) {
|
||||||
const int np0 = ne[0];
|
const int np0 = ne[0];
|
||||||
|
|
||||||
const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
const size_t row_size =
|
||||||
|
(tensor->ne[0] / ggml_blck_size(tensor->type)) *
|
||||||
|
ggml_type_size(tensor->type);
|
||||||
assert(row_size == tensor->nb[1]);
|
assert(row_size == tensor->nb[1]);
|
||||||
|
|
||||||
for (int i1 = 0; i1 < ne[1]; ++i1) {
|
for (int i1 = 0; i1 < ne[1]; ++i1) {
|
||||||
const size_t offset_row = i1 * row_size;
|
const size_t offset_row = i1 * row_size;
|
||||||
const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
const size_t offset =
|
||||||
|
offset_row +
|
||||||
|
((part_id * np0) / ggml_blck_size(tensor->type)) *
|
||||||
|
ggml_type_size(tensor->type);
|
||||||
fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size / n_parts);
|
fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size / n_parts);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
const int np1 = ne[1];
|
const int np1 = ne[1];
|
||||||
|
|
||||||
const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
const size_t row_size =
|
||||||
|
(tensor->ne[0] / ggml_blck_size(tensor->type)) *
|
||||||
|
ggml_type_size(tensor->type);
|
||||||
|
|
||||||
for (int i1 = 0; i1 < ne[1]; ++i1) {
|
for (int i1 = 0; i1 < ne[1]; ++i1) {
|
||||||
const size_t offset_row = (i1 + part_id * np1) * row_size;
|
const size_t offset_row = (i1 + part_id * np1) * row_size;
|
||||||
@ -501,7 +576,9 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
total_size += ggml_nbytes(tensor) / n_parts;
|
total_size += ggml_nbytes(tensor) / n_parts;
|
||||||
}
|
}
|
||||||
|
|
||||||
//fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
// fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n",
|
||||||
|
// name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16",
|
||||||
|
// ggml_nbytes(tensor)/1024.0/1024.0);
|
||||||
if (++n_tensors % 8 == 0) {
|
if (++n_tensors % 8 == 0) {
|
||||||
fprintf(stderr, ".");
|
fprintf(stderr, ".");
|
||||||
fflush(stderr);
|
fflush(stderr);
|
||||||
@ -510,7 +587,8 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
|
|
||||||
fprintf(stderr, " done\n");
|
fprintf(stderr, " done\n");
|
||||||
|
|
||||||
fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
|
fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n",
|
||||||
|
__func__, total_size / 1024.0 / 1024.0, n_tensors);
|
||||||
}
|
}
|
||||||
|
|
||||||
fin.close();
|
fin.close();
|
||||||
@ -529,13 +607,9 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab
|
|||||||
//
|
//
|
||||||
// The GPT-J model requires about 16MB of memory per input token.
|
// The GPT-J model requires about 16MB of memory per input token.
|
||||||
//
|
//
|
||||||
bool llama_eval(
|
bool llama_eval(const llama_model &model, const int n_threads, const int n_past,
|
||||||
const llama_model & model,
|
|
||||||
const int n_threads,
|
|
||||||
const int n_past,
|
|
||||||
const std::vector<gpt_vocab::id> &embd_inp,
|
const std::vector<gpt_vocab::id> &embd_inp,
|
||||||
std::vector<float> & embd_w,
|
std::vector<float> &embd_w, size_t &mem_per_token) {
|
||||||
size_t & mem_per_token) {
|
|
||||||
const int N = embd_inp.size();
|
const int N = embd_inp.size();
|
||||||
|
|
||||||
const auto &hparams = model.hparams;
|
const auto &hparams = model.hparams;
|
||||||
@ -549,14 +623,18 @@ bool llama_eval(
|
|||||||
|
|
||||||
const int d_key = n_embd / n_head;
|
const int d_key = n_embd / n_head;
|
||||||
|
|
||||||
// TODO: check if this size scales with n_ctx linearly and remove constant. somehow I feel it wasn't the case
|
// TODO: check if this size scales with n_ctx linearly and remove constant.
|
||||||
|
// somehow I feel it wasn't the case
|
||||||
// static size_t buf_size = hparams.n_ctx*1024*1024;
|
// static size_t buf_size = hparams.n_ctx*1024*1024;
|
||||||
static size_t buf_size = 512u * 1024 * 1024;
|
static size_t buf_size = 512u * 1024 * 1024;
|
||||||
static void *buf = malloc(buf_size);
|
static void *buf = malloc(buf_size);
|
||||||
|
|
||||||
if (mem_per_token > 0 && mem_per_token * N > buf_size) {
|
if (mem_per_token > 0 && mem_per_token * N > buf_size) {
|
||||||
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
const size_t buf_size_new =
|
||||||
//fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
1.1 *
|
||||||
|
(mem_per_token * N); // add 10% to account for ggml object overhead
|
||||||
|
// fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n",
|
||||||
|
// __func__, buf_size, buf_size_new);
|
||||||
|
|
||||||
// reallocate
|
// reallocate
|
||||||
buf_size = buf_size_new;
|
buf_size = buf_size_new;
|
||||||
@ -591,9 +669,8 @@ bool llama_eval(
|
|||||||
cur = ggml_rms_norm(ctx0, inpL);
|
cur = ggml_rms_norm(ctx0, inpL);
|
||||||
|
|
||||||
// cur = attention_norm*cur
|
// cur = attention_norm*cur
|
||||||
cur = ggml_mul(ctx0,
|
cur = ggml_mul(
|
||||||
ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
|
ctx0, ggml_repeat(ctx0, model.layers[il].attention_norm, cur), cur);
|
||||||
cur);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// self-attention
|
// self-attention
|
||||||
@ -604,42 +681,31 @@ bool llama_eval(
|
|||||||
|
|
||||||
// store key and value to memory
|
// store key and value to memory
|
||||||
if (N >= 1) {
|
if (N >= 1) {
|
||||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
|
struct ggml_tensor *k =
|
||||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
|
ggml_view_1d(ctx0, model.memory_k, N * n_embd,
|
||||||
|
(ggml_element_size(model.memory_k) * n_embd) *
|
||||||
|
(il * n_ctx + n_past));
|
||||||
|
struct ggml_tensor *v =
|
||||||
|
ggml_view_1d(ctx0, model.memory_v, N * n_embd,
|
||||||
|
(ggml_element_size(model.memory_v) * n_embd) *
|
||||||
|
(il * n_ctx + n_past));
|
||||||
|
|
||||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
||||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
||||||
}
|
}
|
||||||
|
|
||||||
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1,
|
||||||
struct ggml_tensor * Q =
|
// 3)
|
||||||
ggml_permute(ctx0,
|
struct ggml_tensor *Q = ggml_permute(ctx0, ggml_rope(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), n_past, n_rot, 0), 0, 2, 1, 3);
|
||||||
ggml_rope(ctx0,
|
|
||||||
ggml_cpy(ctx0,
|
|
||||||
Qcur,
|
|
||||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
|
|
||||||
n_past, n_rot, 0),
|
|
||||||
0, 2, 1, 3);
|
|
||||||
|
|
||||||
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
||||||
struct ggml_tensor * K =
|
struct ggml_tensor *K = ggml_permute(ctx0, ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.memory_k) * n_embd), n_embd / n_head, n_head, n_past + N), n_past, n_rot, 1), 0, 2, 1, 3);
|
||||||
ggml_permute(ctx0,
|
|
||||||
ggml_rope(ctx0,
|
|
||||||
ggml_reshape_3d(ctx0,
|
|
||||||
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
|
|
||||||
n_embd/n_head, n_head, n_past + N),
|
|
||||||
n_past, n_rot, 1),
|
|
||||||
0, 2, 1, 3);
|
|
||||||
|
|
||||||
// K * Q
|
// K * Q
|
||||||
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
|
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
|
||||||
|
|
||||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||||
struct ggml_tensor * KQ_scaled =
|
struct ggml_tensor *KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head)));
|
||||||
ggml_scale(ctx0,
|
|
||||||
KQ,
|
|
||||||
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
|
|
||||||
);
|
|
||||||
|
|
||||||
// KQ_masked = mask_past(KQ_scaled)
|
// KQ_masked = mask_past(KQ_scaled)
|
||||||
struct ggml_tensor *KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
struct ggml_tensor *KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
||||||
@ -647,10 +713,12 @@ bool llama_eval(
|
|||||||
// KQ = soft_max(KQ_masked)
|
// KQ = soft_max(KQ_masked)
|
||||||
struct ggml_tensor *KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
struct ggml_tensor *KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
||||||
|
|
||||||
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0,
|
||||||
struct ggml_tensor * V_trans =
|
// 3).contiguous()
|
||||||
ggml_permute(ctx0,
|
struct ggml_tensor *V_trans = ggml_permute(
|
||||||
ggml_reshape_3d(ctx0,
|
ctx0,
|
||||||
|
ggml_reshape_3d(
|
||||||
|
ctx0,
|
||||||
ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.memory_v) * n_embd),
|
ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.memory_v) * n_embd),
|
||||||
n_embd / n_head, n_head, n_past + N),
|
n_embd / n_head, n_head, n_past + N),
|
||||||
1, 2, 0, 3);
|
1, 2, 0, 3);
|
||||||
@ -662,14 +730,10 @@ bool llama_eval(
|
|||||||
struct ggml_tensor *KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
struct ggml_tensor *KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||||
|
|
||||||
// cur = KQV_merged.contiguous().view(n_embd, N)
|
// cur = KQV_merged.contiguous().view(n_embd, N)
|
||||||
cur = ggml_cpy(ctx0,
|
cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
||||||
KQV_merged,
|
|
||||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
|
||||||
|
|
||||||
// projection (no bias)
|
// projection (no bias)
|
||||||
cur = ggml_mul_mat(ctx0,
|
cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
|
||||||
model.layers[il].wo,
|
|
||||||
cur);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor *inpFF = ggml_add(ctx0, cur, inpSA);
|
struct ggml_tensor *inpFF = ggml_add(ctx0, cur, inpSA);
|
||||||
@ -681,28 +745,19 @@ bool llama_eval(
|
|||||||
cur = ggml_rms_norm(ctx0, inpFF);
|
cur = ggml_rms_norm(ctx0, inpFF);
|
||||||
|
|
||||||
// cur = ffn_norm*cur
|
// cur = ffn_norm*cur
|
||||||
cur = ggml_mul(ctx0,
|
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ffn_norm, cur), cur);
|
||||||
ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
|
|
||||||
cur);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
|
struct ggml_tensor *tmp = ggml_mul_mat(ctx0, model.layers[il].w3, cur);
|
||||||
model.layers[il].w3,
|
|
||||||
cur);
|
|
||||||
|
|
||||||
|
cur = ggml_mul_mat(ctx0, model.layers[il].w1, cur);
|
||||||
cur = ggml_mul_mat(ctx0,
|
|
||||||
model.layers[il].w1,
|
|
||||||
cur);
|
|
||||||
|
|
||||||
// SILU activation
|
// SILU activation
|
||||||
cur = ggml_silu(ctx0, cur);
|
cur = ggml_silu(ctx0, cur);
|
||||||
|
|
||||||
cur = ggml_mul(ctx0, cur, tmp);
|
cur = ggml_mul(ctx0, cur, tmp);
|
||||||
|
|
||||||
cur = ggml_mul_mat(ctx0,
|
cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
|
||||||
model.layers[il].w2,
|
|
||||||
cur);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
cur = ggml_add(ctx0, cur, inpFF);
|
cur = ggml_add(ctx0, cur, inpFF);
|
||||||
@ -716,15 +771,11 @@ bool llama_eval(
|
|||||||
inpL = ggml_rms_norm(ctx0, inpL);
|
inpL = ggml_rms_norm(ctx0, inpL);
|
||||||
|
|
||||||
// inpL = norm*inpL
|
// inpL = norm*inpL
|
||||||
inpL = ggml_mul(ctx0,
|
inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm, inpL), inpL);
|
||||||
ggml_repeat(ctx0, model.norm, inpL),
|
|
||||||
inpL);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// lm_head
|
// lm_head
|
||||||
{
|
{ inpL = ggml_mul_mat(ctx0, model.output, inpL); }
|
||||||
inpL = ggml_mul_mat(ctx0, model.output, inpL);
|
|
||||||
}
|
|
||||||
|
|
||||||
// logits -> probs
|
// logits -> probs
|
||||||
// inpL = ggml_soft_max(ctx0, inpL);
|
// inpL = ggml_soft_max(ctx0, inpL);
|
||||||
@ -743,7 +794,8 @@ bool llama_eval(
|
|||||||
|
|
||||||
// return result for just the last token
|
// return result for just the last token
|
||||||
embd_w.resize(n_vocab);
|
embd_w.resize(n_vocab);
|
||||||
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)),
|
||||||
|
sizeof(float) * n_vocab);
|
||||||
|
|
||||||
if (mem_per_token == 0) {
|
if (mem_per_token == 0) {
|
||||||
mem_per_token = ggml_used_mem(ctx0) / N;
|
mem_per_token = ggml_used_mem(ctx0) / N;
|
||||||
@ -757,7 +809,8 @@ bool llama_eval(
|
|||||||
|
|
||||||
static bool is_interacting = false;
|
static bool is_interacting = false;
|
||||||
|
|
||||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || \
|
||||||
|
defined(_WIN32)
|
||||||
void sigint_handler(int signo) {
|
void sigint_handler(int signo) {
|
||||||
printf(ANSI_COLOR_RESET);
|
printf(ANSI_COLOR_RESET);
|
||||||
if (signo == SIGINT) {
|
if (signo == SIGINT) {
|
||||||
@ -795,7 +848,7 @@ int main(int argc, char ** argv) {
|
|||||||
const int64_t t_main_start_us = ggml_time_us();
|
const int64_t t_main_start_us = ggml_time_us();
|
||||||
|
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
params.model = "models/llama-7B/ggml-model.bin";
|
params.model = "models/7B/ggml-model.bin";
|
||||||
|
|
||||||
if (gpt_params_parse(argc, argv, params) == false) {
|
if (gpt_params_parse(argc, argv, params) == false) {
|
||||||
return 1;
|
return 1;
|
||||||
@ -824,7 +877,8 @@ int main(int argc, char ** argv) {
|
|||||||
{
|
{
|
||||||
const int64_t t_start_us = ggml_time_us();
|
const int64_t t_start_us = ggml_time_us();
|
||||||
if (!llama_model_load(params.model, model, vocab, params.n_ctx)) {
|
if (!llama_model_load(params.model, model, vocab, params.n_ctx)) {
|
||||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__,
|
||||||
|
params.model.c_str());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -834,10 +888,35 @@ int main(int argc, char ** argv) {
|
|||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", params.n_threads,
|
||||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
std::thread::hardware_concurrency(), llama_print_system_info());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
printf("Initializing crow...");
|
||||||
|
|
||||||
|
crow::SimpleApp app;
|
||||||
|
|
||||||
|
CROW_ROUTE(app, "/")([&](const crow::request& req) -> std::string {
|
||||||
|
nlohmann::json json_data = nlohmann::json::parse(req.body);
|
||||||
|
std::string input = "Transcript of a dialog, where the User interacts with an Assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision.\n";
|
||||||
|
|
||||||
|
auto messages = json_data["messages"];
|
||||||
|
|
||||||
|
for (auto& message : messages) {
|
||||||
|
std::string role = message["role"];
|
||||||
|
std::string content = message["content"];
|
||||||
|
|
||||||
|
if (role == "user") {
|
||||||
|
input = input + "\nUser: " + content;
|
||||||
|
} else {
|
||||||
|
input = input + "\nBob: " + content;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
input = input + "\nBob: ";
|
||||||
|
|
||||||
|
std::string result = "";
|
||||||
|
|
||||||
int n_past = 0;
|
int n_past = 0;
|
||||||
|
|
||||||
int64_t t_sample_us = 0;
|
int64_t t_sample_us = 0;
|
||||||
@ -846,18 +925,23 @@ int main(int argc, char ** argv) {
|
|||||||
std::vector<float> logits;
|
std::vector<float> logits;
|
||||||
|
|
||||||
// tokenize the prompt
|
// tokenize the prompt
|
||||||
std::vector<gpt_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
|
std::vector<gpt_vocab::id> embd_inp =
|
||||||
|
::llama_tokenize(vocab, input, true);
|
||||||
|
|
||||||
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
|
params.n_predict =
|
||||||
|
std::min(params.n_predict, model.hparams.n_ctx - (int)embd_inp.size());
|
||||||
|
|
||||||
// tokenize the reverse prompt
|
// tokenize the reverse prompt
|
||||||
std::vector<gpt_vocab::id> antiprompt_inp = ::llama_tokenize(vocab, params.antiprompt, false);
|
std::vector<gpt_vocab::id> antiprompt_inp =
|
||||||
|
::llama_tokenize(vocab, params.antiprompt, false);
|
||||||
|
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__,
|
||||||
|
embd_inp.size());
|
||||||
for (int i = 0; i < (int)embd_inp.size(); i++) {
|
for (int i = 0; i < (int)embd_inp.size(); i++) {
|
||||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
|
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i],
|
||||||
|
vocab.id_to_token.at(embd_inp[i]).c_str());
|
||||||
}
|
}
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
@ -874,15 +958,22 @@ int main(int argc, char ** argv) {
|
|||||||
fprintf(stderr, "%s: interactive mode on.\n", __func__);
|
fprintf(stderr, "%s: interactive mode on.\n", __func__);
|
||||||
|
|
||||||
if (antiprompt_inp.size()) {
|
if (antiprompt_inp.size()) {
|
||||||
fprintf(stderr, "%s: reverse prompt: '%s'\n", __func__, params.antiprompt.c_str());
|
fprintf(stderr, "%s: reverse prompt: '%s'\n", __func__,
|
||||||
fprintf(stderr, "%s: number of tokens in reverse prompt = %zu\n", __func__, antiprompt_inp.size());
|
params.antiprompt.c_str());
|
||||||
|
fprintf(stderr, "%s: number of tokens in reverse prompt = %zu\n",
|
||||||
|
__func__, antiprompt_inp.size());
|
||||||
for (int i = 0; i < (int)antiprompt_inp.size(); i++) {
|
for (int i = 0; i < (int)antiprompt_inp.size(); i++) {
|
||||||
fprintf(stderr, "%6d -> '%s'\n", antiprompt_inp[i], vocab.id_to_token.at(antiprompt_inp[i]).c_str());
|
fprintf(stderr, "%6d -> '%s'\n", antiprompt_inp[i],
|
||||||
|
vocab.id_to_token.at(antiprompt_inp[i]).c_str());
|
||||||
}
|
}
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
|
fprintf(stderr,
|
||||||
|
"sampling parameters: temp = %f, top_k = %d, top_p = %f, "
|
||||||
|
"repeat_last_n = %i, repeat_penalty = %f\n",
|
||||||
|
params.temp, params.top_k, params.top_p, params.repeat_last_n,
|
||||||
|
params.repeat_penalty);
|
||||||
fprintf(stderr, "\n\n");
|
fprintf(stderr, "\n\n");
|
||||||
|
|
||||||
std::vector<gpt_vocab::id> embd;
|
std::vector<gpt_vocab::id> embd;
|
||||||
@ -895,10 +986,11 @@ int main(int argc, char ** argv) {
|
|||||||
std::vector<gpt_vocab::id> last_n_tokens(last_n_size);
|
std::vector<gpt_vocab::id> last_n_tokens(last_n_size);
|
||||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||||
|
|
||||||
|
|
||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
fprintf(stderr, "== Running in interactive mode. ==\n"
|
fprintf(stderr,
|
||||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
"== Running in interactive mode. ==\n"
|
||||||
|
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || \
|
||||||
|
defined(_WIN32)
|
||||||
" - Press Ctrl+C to interject at any time.\n"
|
" - Press Ctrl+C to interject at any time.\n"
|
||||||
#endif
|
#endif
|
||||||
" - Press Return to return control to LLaMa.\n"
|
" - Press Return to return control to LLaMa.\n"
|
||||||
@ -924,9 +1016,10 @@ int main(int argc, char ** argv) {
|
|||||||
if (embd.size() > 0) {
|
if (embd.size() > 0) {
|
||||||
const int64_t t_start_us = ggml_time_us();
|
const int64_t t_start_us = ggml_time_us();
|
||||||
|
|
||||||
if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
|
if (!llama_eval(model, params.n_threads, n_past, embd, logits,
|
||||||
|
mem_per_token)) {
|
||||||
fprintf(stderr, "Failed to predict\n");
|
fprintf(stderr, "Failed to predict\n");
|
||||||
return 1;
|
return std::string("Failed to predict");
|
||||||
}
|
}
|
||||||
|
|
||||||
t_predict_us += ggml_time_us() - t_start_us;
|
t_predict_us += ggml_time_us() - t_start_us;
|
||||||
@ -949,7 +1042,9 @@ int main(int argc, char ** argv) {
|
|||||||
{
|
{
|
||||||
const int64_t t_start_sample_us = ggml_time_us();
|
const int64_t t_start_sample_us = ggml_time_us();
|
||||||
|
|
||||||
id = llama_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
|
id = llama_sample_top_p_top_k(
|
||||||
|
vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens,
|
||||||
|
repeat_penalty, top_k, top_p, temp, rng);
|
||||||
|
|
||||||
last_n_tokens.erase(last_n_tokens.begin());
|
last_n_tokens.erase(last_n_tokens.begin());
|
||||||
last_n_tokens.push_back(id);
|
last_n_tokens.push_back(id);
|
||||||
@ -962,11 +1057,9 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
// echo this to console
|
// echo this to console
|
||||||
input_noecho = false;
|
input_noecho = false;
|
||||||
|
|
||||||
// decrement remaining sampling budget
|
|
||||||
--remaining_tokens;
|
|
||||||
} else {
|
} else {
|
||||||
// some user input remains from prompt or interaction, forward it to processing
|
// some user input remains from prompt or interaction, forward it to
|
||||||
|
// processing
|
||||||
while (embd_inp.size() > input_consumed) {
|
while (embd_inp.size() > input_consumed) {
|
||||||
embd.push_back(embd_inp[input_consumed]);
|
embd.push_back(embd_inp[input_consumed]);
|
||||||
last_n_tokens.erase(last_n_tokens.begin());
|
last_n_tokens.erase(last_n_tokens.begin());
|
||||||
@ -978,64 +1071,39 @@ int main(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// reset color to default if we there is no pending user input
|
// reset color to default if we there is no pending user input
|
||||||
if (!input_noecho && params.use_color && embd_inp.size() == input_consumed) {
|
if (!input_noecho && params.use_color &&
|
||||||
|
embd_inp.size() == input_consumed) {
|
||||||
printf(ANSI_COLOR_RESET);
|
printf(ANSI_COLOR_RESET);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// display text
|
|
||||||
if (!input_noecho) {
|
|
||||||
for (auto id : embd) {
|
|
||||||
printf("%s", vocab.id_to_token[id].c_str());
|
|
||||||
}
|
|
||||||
fflush(stdout);
|
|
||||||
}
|
|
||||||
|
|
||||||
// in interactive mode, and not currently processing queued inputs;
|
// in interactive mode, and not currently processing queued inputs;
|
||||||
// check if we should prompt the user for more
|
// check if we should prompt the user for more
|
||||||
if (params.interactive && embd_inp.size() <= input_consumed) {
|
if (params.interactive && embd_inp.size() <= input_consumed) {
|
||||||
// check for reverse prompt
|
// check for reverse prompt
|
||||||
if (antiprompt_inp.size() && std::equal(antiprompt_inp.rbegin(), antiprompt_inp.rend(), last_n_tokens.rbegin())) {
|
if (antiprompt_inp.size() &&
|
||||||
|
std::equal(antiprompt_inp.rbegin(), antiprompt_inp.rend(),
|
||||||
|
last_n_tokens.rbegin())) {
|
||||||
// reverse prompt found
|
// reverse prompt found
|
||||||
|
printf("Reverse prompt found.\n");
|
||||||
|
result.erase(result.size() - 4);
|
||||||
is_interacting = true;
|
is_interacting = true;
|
||||||
}
|
}
|
||||||
if (is_interacting) {
|
if (is_interacting) {
|
||||||
// currently being interactive
|
|
||||||
bool another_line=true;
|
|
||||||
while (another_line) {
|
|
||||||
fflush(stdout);
|
|
||||||
char buf[256] = {0};
|
|
||||||
int n_read;
|
|
||||||
if(params.use_color) printf(ANSI_BOLD ANSI_COLOR_GREEN);
|
|
||||||
if (scanf("%255[^\n]%n%*c", buf, &n_read) <= 0) {
|
|
||||||
// presumable empty line, consume the newline
|
|
||||||
scanf("%*c");
|
|
||||||
n_read=0;
|
|
||||||
}
|
|
||||||
if(params.use_color) printf(ANSI_COLOR_RESET);
|
|
||||||
|
|
||||||
if (n_read > 0 && buf[n_read-1]=='\\') {
|
|
||||||
another_line = true;
|
|
||||||
buf[n_read-1] = '\n';
|
|
||||||
buf[n_read] = 0;
|
|
||||||
} else {
|
|
||||||
another_line = false;
|
|
||||||
buf[n_read] = '\n';
|
|
||||||
buf[n_read+1] = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<gpt_vocab::id> line_inp = ::llama_tokenize(vocab, buf, false);
|
|
||||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
|
||||||
|
|
||||||
remaining_tokens -= line_inp.size();
|
|
||||||
|
|
||||||
input_noecho = true; // do not echo this again
|
|
||||||
}
|
|
||||||
|
|
||||||
is_interacting = false;
|
is_interacting = false;
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// display text
|
||||||
|
if (!input_noecho) {
|
||||||
|
for (auto id : embd) {
|
||||||
|
result = result + vocab.id_to_token[id].c_str();
|
||||||
|
printf("%s", vocab.id_to_token[id].c_str());
|
||||||
|
}
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
|
||||||
// end of text token
|
// end of text token
|
||||||
if (embd.back() == 2) {
|
if (embd.back() == 2) {
|
||||||
fprintf(stderr, " [end of text]\n");
|
fprintf(stderr, " [end of text]\n");
|
||||||
@ -1052,13 +1120,23 @@ int main(int argc, char ** argv) {
|
|||||||
const int64_t t_main_end_us = ggml_time_us();
|
const int64_t t_main_end_us = ggml_time_us();
|
||||||
|
|
||||||
fprintf(stderr, "\n\n");
|
fprintf(stderr, "\n\n");
|
||||||
fprintf(stderr, "%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
|
fprintf(stderr, "%s: mem per token = %8zu bytes\n", __func__,
|
||||||
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
mem_per_token);
|
||||||
fprintf(stderr, "%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__,
|
||||||
fprintf(stderr, "%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
|
t_load_us / 1000.0f);
|
||||||
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
fprintf(stderr, "%s: sample time = %8.2f ms\n", __func__,
|
||||||
|
t_sample_us / 1000.0f);
|
||||||
|
fprintf(stderr, "%s: predict time = %8.2f ms / %.2f ms per token\n",
|
||||||
|
__func__, t_predict_us / 1000.0f, t_predict_us / 1000.0f / n_past);
|
||||||
|
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__,
|
||||||
|
(t_main_end_us - t_main_start_us) / 1000.0f);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
return result.substr(input.length());
|
||||||
|
});
|
||||||
|
|
||||||
|
app.port(18080).multithreaded().run();
|
||||||
|
|
||||||
ggml_free(model.ctx);
|
ggml_free(model.ctx);
|
||||||
|
|
||||||
if (params.use_color) {
|
if (params.use_color) {
|
||||||
|
Reference in New Issue
Block a user