Initial commit.

This commit is contained in:
Nicolas Patry
2020-06-06 09:41:45 +02:00
parent d0e3189459
commit 001b169024
10 changed files with 1281 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
target

14
Cargo.lock generated Normal file
View File

@ -0,0 +1,14 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
[[package]]
name = "cc"
version = "1.0.54"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7bbb73db36c1246e9034e307d0fba23f9a2e251faa47ade70c1bd252220c8311"
[[package]]
name = "esaxx-rs"
version = "0.1.0"
dependencies = [
"cc",
]

18
Cargo.toml Normal file
View File

@ -0,0 +1,18 @@
[package]
name = "esaxx-rs"
version = "0.1.0"
authors = ["Nicolas Patry <patry.nicolas@protonmail.com>"]
edition = "2018"
description = "Wrapping around sentencepiece's esaxxx library."
license = "Apache-2.0"
homepage = "https://github.com/Narsil/esaxx-rs"
documentation = "https://docs.rs/esaxx-rs"
repository = "https://github.com/Narsil/esaxx-rs"
readme = "README.md"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
[build-dependencies]
cc = "1.0"

33
README.md Normal file
View File

@ -0,0 +1,33 @@
# esaxx-rs
Small wrapper around sentencepiece's esaxx suffix array C++ library.
Usage
```rust
let string = "abracadabra".to_string();
let chars: Vec<_> = string.chars().collect();
let n = chars.len();
let mut sa = vec![0; n];
let mut l = vec![0; n];
let mut r = vec![0; n];
let mut d = vec![0; n];
let mut node_num = 0;
let alphabet_size = 0x110000; // All UCS4 range.
unsafe {
esaxx_int32(
chars.as_ptr() as *mut u32,
sa.as_mut_ptr(),
l.as_mut_ptr(),
r.as_mut_ptr(),
d.as_mut_ptr(),
n.try_into().unwrap(),
alphabet_size,
&mut node_num,
);
}
```
Current version: 0.1.0
License: Apache

7
README.tpl Normal file
View File

@ -0,0 +1,7 @@
# {{crate}}
{{readme}}
Current version: {{version}}
License: {{license}}

7
build.rs Normal file
View File

@ -0,0 +1,7 @@
fn main() {
cc::Build::new()
.cpp(true)
.file("src/esaxx.cpp")
.include("src")
.compile("esaxx");
}

126
src/esa.hxx Normal file
View File

@ -0,0 +1,126 @@
/*
* esa.hxx
* Copyright (c) 2010 Daisuke Okanohara All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef _ESA_HXX
#define _ESA_HXX
#include <vector>
#include <utility>
#include <cassert>
#include "sais.hxx"
namespace esaxx_private {
template<typename string_type, typename sarray_type, typename index_type>
index_type suffixtree(string_type T, sarray_type SA, sarray_type L, sarray_type R, sarray_type D, index_type n){
if (n == 0){
return 0;
}
sarray_type Psi = L;
Psi[SA[0]] = SA[n-1];
for (index_type i = 1; i < n; ++i){
Psi[SA[i]] = SA[i-1];
}
// Compare at most 2n log n charcters. Practically fastest
// "Permuted Longest-Common-Prefix Array", Juha Karkkainen, CPM 09
sarray_type PLCP = R;
index_type h = 0;
for (index_type i = 0; i < n; ++i){
index_type j = Psi[i];
while (i+h < n && j+h < n &&
T[i+h] == T[j+h]){
++h;
}
PLCP[i] = h;
if (h > 0) --h;
}
sarray_type H = L;
for (index_type i = 0; i < n; ++i){
H[i] = PLCP[SA[i]];
}
H[0] = -1;
std::vector<std::pair<index_type, index_type> > S;
S.push_back(std::make_pair((index_type)-1, (index_type)-1));
size_t nodeNum = 0;
for (index_type i = 0; ; ++i){
std::pair<index_type, index_type> cur (i, (i == n) ? -1 : H[i]);
std::pair<index_type, index_type> cand(S.back());
while (cand.second > cur.second){
if (i - cand.first > 1){
L[nodeNum] = cand.first;
R[nodeNum] = i;
D[nodeNum] = cand.second;
++nodeNum;
}
cur.first = cand.first;
S.pop_back();
cand = S.back();
}
if (cand.second < cur.second){
S.push_back(cur);
}
if (i == n) break;
S.push_back(std::make_pair(i, n - SA[i] + 1));
}
return nodeNum;
}
}
/**
* @brief Build an enhanced suffix array of a given string in linear time
* For an input text T, esaxx() builds an enhancd suffix array in linear time.
* i-th internal node is represented as a triple (L[i], R[i], D[i]);
* L[i] and R[i] is the left/right boundary of the suffix array as SA[L[i]....R[i]-1]
* D[i] is the depth of the internal node
* The number of internal node is at most N-1 and return the actual number by
* @param T[0...n-1] The input string. (random access iterator)
* @param SA[0...n-1] The output suffix array (random access iterator)
* @param L[0...n-1] The output left boundary of internal node (random access iterator)
* @param R[0...n-1] The output right boundary of internal node (random access iterator)
* @param D[0...n-1] The output depth of internal node (random access iterator)
* @param n The length of the input string
* @param k The alphabet size
* @pram nodeNum The output the number of internal node
* @return 0 if succeded, -1 or -2 otherwise
*/
template<typename string_type, typename sarray_type, typename index_type>
int esaxx(string_type T, sarray_type SA, sarray_type L, sarray_type R, sarray_type D,
index_type n, index_type k, index_type& nodeNum) {
if ((n < 0) || (k <= 0)) return -1;
int err = saisxx(T, SA, n, k);
if (err != 0){
return err;
}
nodeNum = esaxx_private::suffixtree(T, SA, L, R, D, n);
return 0;
}
#endif // _ESA_HXX

632
src/esaxx.cpp Normal file
View File

@ -0,0 +1,632 @@
//
// /*
// * sais.hxx for sais-lite
// * Copyright (c) 2008-2009 Yuta Mori All Rights Reserved.
// *
// * Permission is hereby granted, free of charge, to any person
// * obtaining a copy of this software and associated documentation
// * files (the "Software"), to deal in the Software without
// * restriction, including without limitation the rights to use,
// * copy, modify, merge, publish, distribute, sublicense, and/or sell
// * copies of the Software, and to permit persons to whom the
// * Software is furnished to do so, subject to the following
// * conditions:
// *
// * The above copyright notice and this permission notice shall be
// * included in all copies or substantial portions of the Software.
// *
// * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// * OTHER DEALINGS IN THE SOFTWARE.
// */
//
// #ifndef _SAIS_HXX
// #define _SAIS_HXX 1
// #ifdef __cplusplus
//
// #ifdef __INTEL_COMPILER
// #pragma warning(disable : 383 981 1418)
// // for icc 64-bit
// //#define __builtin_vsnprintf(a, b, c, d) __builtin_vsnprintf(a, b, c, (char *)d)
// #endif
//
// #include <iterator>
// #ifdef _OPENMP
// # include <omp.h>
// #endif
//
// namespace saisxx_private {
//
// /* find the start or end of each bucket */
// template<typename string_type, typename bucket_type, typename index_type>
// void
// getCounts(const string_type T, bucket_type C, index_type n, index_type k) {
// #ifdef _OPENMP
// bucket_type D;
// index_type i, j, p, sum, first, last;
// int thnum, maxthreads = omp_get_max_threads();
// #pragma omp parallel default(shared) private(D, i, thnum, first, last)
// {
// thnum = omp_get_thread_num();
// D = C + thnum * k;
// first = n / maxthreads * thnum;
// last = (thnum < (maxthreads - 1)) ? n / maxthreads * (thnum + 1) : n;
// for(i = 0; i < k; ++i) { D[i] = 0; }
// for(i = first; i < last; ++i) { ++D[T[i]]; }
// }
// if(1 < maxthreads) {
// #pragma omp parallel for default(shared) private(i, j, p, sum)
// for(i = 0; i < k; ++i) {
// for(j = 1, p = i + k, sum = C[i]; j < maxthreads; ++j, p += k) {
// sum += C[p];
// }
// C[i] = sum;
// }
// }
// #else
// index_type i;
// for(i = 0; i < k; ++i) { C[i] = 0; }
// for(i = 0; i < n; ++i) { ++C[T[i]]; }
// #endif
// }
// template<typename bucket_type, typename index_type>
// void
// getBuckets(const bucket_type C, bucket_type B, index_type k, bool end) {
// index_type i, sum = 0;
// if(end) { for(i = 0; i < k; ++i) { sum += C[i]; B[i] = sum; } }
// else { for(i = 0; i < k; ++i) { sum += C[i]; B[i] = sum - C[i]; } }
// }
//
// /* compute SA and BWT */
// template<typename string_type, typename sarray_type,
// typename bucket_type, typename index_type>
// void
// induceSA(string_type T, sarray_type SA, bucket_type C, bucket_type B,
// index_type n, index_type k) {
// typedef typename std::iterator_traits<string_type>::value_type char_type;
// sarray_type b;
// index_type i, j;
// char_type c0, c1;
// /* compute SAl */
// if(C == B) { getCounts(T, C, n, k); }
// getBuckets(C, B, k, false); /* find starts of buckets */
// b = SA + B[c1 = T[j = n - 1]];
// *b++ = ((0 < j) && (T[j - 1] < c1)) ? ~j : j;
// for(i = 0; i < n; ++i) {
// j = SA[i], SA[i] = ~j;
// if(0 < j) {
// if((c0 = T[--j]) != c1) { B[c1] = b - SA; b = SA + B[c1 = c0]; }
// *b++ = ((0 < j) && (T[j - 1] < c1)) ? ~j : j;
// }
// }
// /* compute SAs */
// if(C == B) { getCounts(T, C, n, k); }
// getBuckets(C, B, k, true); /* find ends of buckets */
// for(i = n - 1, b = SA + B[c1 = 0]; 0 <= i; --i) {
// if(0 < (j = SA[i])) {
// if((c0 = T[--j]) != c1) { B[c1] = b - SA; b = SA + B[c1 = c0]; }
// *--b = ((j == 0) || (T[j - 1] > c1)) ? ~j : j;
// } else {
// SA[i] = ~j;
// }
// }
// }
// template<typename string_type, typename sarray_type,
// typename bucket_type, typename index_type>
// int
// computeBWT(string_type T, sarray_type SA, bucket_type C, bucket_type B,
// index_type n, index_type k) {
// typedef typename std::iterator_traits<string_type>::value_type char_type;
// sarray_type b;
// index_type i, j, pidx = -1;
// char_type c0, c1;
// /* compute SAl */
// if(C == B) { getCounts(T, C, n, k); }
// getBuckets(C, B, k, false); /* find starts of buckets */
// b = SA + B[c1 = T[j = n - 1]];
// *b++ = ((0 < j) && (T[j - 1] < c1)) ? ~j : j;
// for(i = 0; i < n; ++i) {
// if(0 < (j = SA[i])) {
// SA[i] = ~(c0 = T[--j]);
// if(c0 != c1) { B[c1] = b - SA; b = SA + B[c1 = c0]; }
// *b++ = ((0 < j) && (T[j - 1] < c1)) ? ~j : j;
// } else if(j != 0) {
// SA[i] = ~j;
// }
// }
// /* compute SAs */
// if(C == B) { getCounts(T, C, n, k); }
// getBuckets(C, B, k, true); /* find ends of buckets */
// for(i = n - 1, b = SA + B[c1 = 0]; 0 <= i; --i) {
// if(0 < (j = SA[i])) {
// SA[i] = (c0 = T[--j]);
// if(c0 != c1) { B[c1] = b - SA; b = SA + B[c1 = c0]; }
// *--b = ((0 < j) && (T[j - 1] > c1)) ? ~((index_type)T[j - 1]) : j;
// } else if(j != 0) {
// SA[i] = ~j;
// } else {
// pidx = i;
// }
// }
// return pidx;
// }
//
// /* find the suffix array SA of T[0..n-1] in {0..k}^n
// use a working space (excluding s and SA) of at most 2n+O(1) for a constant alphabet */
// template<typename string_type, typename sarray_type, typename index_type>
// int
// suffixsort(string_type T, sarray_type SA,
// index_type fs, index_type n, index_type k,
// bool isbwt) {
// typedef typename std::iterator_traits<string_type>::value_type char_type;
// sarray_type RA;
// index_type i, j, m, p, q, plen, qlen, name, pidx = 0;
// bool diff;
// int c;
// #ifdef _OPENMP
// int maxthreads = omp_get_max_threads();
// #else
// # define maxthreads 1
// #endif
// char_type c0, c1;
//
// /* stage 1: reduce the problem by at least 1/2
// sort all the S-substrings */
// if(fs < (maxthreads * k)) {
// index_type *C, *B;
// if((C = new index_type[maxthreads * k]) == 0) { return -2; }
// B = (1 < maxthreads) ? C + k : C;
// getCounts(T, C, n, k); getBuckets(C, B, k, true); /* find ends of buckets */
// #ifdef _OPENMP
// #pragma omp parallel for default(shared) private(i)
// #endif
// for(i = 0; i < n; ++i) { SA[i] = 0; }
// for(i = n - 2, c = 0, c1 = T[n - 1]; 0 <= i; --i, c1 = c0) {
// if((c0 = T[i]) < (c1 + c)) { c = 1; }
// else if(c != 0) { SA[--B[c1]] = i + 1, c = 0; }
// }
// induceSA(T, SA, C, B, n, k);
// delete [] C;
// } else {
// sarray_type C, B;
// C = SA + n;
// B = ((1 < maxthreads) || (k <= (fs - k))) ? C + k : C;
// getCounts(T, C, n, k); getBuckets(C, B, k, true); /* find ends of buckets */
// #ifdef _OPENMP
// #pragma omp parallel for default(shared) private(i)
// #endif
// for(i = 0; i < n; ++i) { SA[i] = 0; }
// for(i = n - 2, c = 0, c1 = T[n - 1]; 0 <= i; --i, c1 = c0) {
// if((c0 = T[i]) < (c1 + c)) { c = 1; }
// else if(c != 0) { SA[--B[c1]] = i + 1, c = 0; }
// }
// induceSA(T, SA, C, B, n, k);
// }
//
// /* compact all the sorted substrings into the first m items of SA
// 2*m must be not larger than n (proveable) */
// #ifdef _OPENMP
// #pragma omp parallel for default(shared) private(i, j, p, c0, c1)
// for(i = 0; i < n; ++i) {
// p = SA[i];
// if((0 < p) && (T[p - 1] > (c0 = T[p]))) {
// for(j = p + 1; (j < n) && (c0 == (c1 = T[j])); ++j) { }
// if((j < n) && (c0 < c1)) { SA[i] = ~p; }
// }
// }
// for(i = 0, m = 0; i < n; ++i) { if((p = SA[i]) < 0) { SA[m++] = ~p; } }
// #else
// for(i = 0, m = 0; i < n; ++i) {
// p = SA[i];
// if((0 < p) && (T[p - 1] > (c0 = T[p]))) {
// for(j = p + 1; (j < n) && (c0 == (c1 = T[j])); ++j) { }
// if((j < n) && (c0 < c1)) { SA[m++] = p; }
// }
// }
// #endif
// j = m + (n >> 1);
// #ifdef _OPENMP
// #pragma omp parallel for default(shared) private(i)
// #endif
// for(i = m; i < j; ++i) { SA[i] = 0; } /* init the name array buffer */
// /* store the length of all substrings */
// for(i = n - 2, j = n, c = 0, c1 = T[n - 1]; 0 <= i; --i, c1 = c0) {
// if((c0 = T[i]) < (c1 + c)) { c = 1; }
// else if(c != 0) { SA[m + ((i + 1) >> 1)] = j - i - 1; j = i + 1; c = 0; }
// }
// /* find the lexicographic names of all substrings */
// for(i = 0, name = 0, q = n, qlen = 0; i < m; ++i) {
// p = SA[i], plen = SA[m + (p >> 1)], diff = true;
// if(plen == qlen) {
// for(j = 0; (j < plen) && (T[p + j] == T[q + j]); ++j) { }
// if(j == plen) { diff = false; }
// }
// if(diff != false) { ++name, q = p, qlen = plen; }
// SA[m + (p >> 1)] = name;
// }
//
// /* stage 2: solve the reduced problem
// recurse if names are not yet unique */
// if(name < m) {
// RA = SA + n + fs - m;
// for(i = m + (n >> 1) - 1, j = m - 1; m <= i; --i) {
// if(SA[i] != 0) { RA[j--] = SA[i] - 1; }
// }
// if(suffixsort(RA, SA, fs + n - m * 2, m, name, false) != 0) { return -2; }
// for(i = n - 2, j = m - 1, c = 0, c1 = T[n - 1]; 0 <= i; --i, c1 = c0) {
// if((c0 = T[i]) < (c1 + c)) { c = 1; }
// else if(c != 0) { RA[j--] = i + 1, c = 0; } /* get p1 */
// }
// #ifdef _OPENMP
// #pragma omp parallel for default(shared) private(i)
// #endif
// for(i = 0; i < m; ++i) { SA[i] = RA[SA[i]]; } /* get index in s */
// }
//
// /* stage 3: induce the result for the original problem */
// if(fs < (maxthreads * k)) {
// index_type *B, *C;
// if((C = new index_type[maxthreads * k]) == 0) { return -2; }
// B = (1 < maxthreads) ? C + k : C;
// /* put all left-most S characters into their buckets */
// getCounts(T, C, n, k); getBuckets(C, B, k, true); /* find ends of buckets */
// #ifdef _OPENMP
// #pragma omp parallel for default(shared) private(i)
// #endif
// for(i = m; i < n; ++i) { SA[i] = 0; } /* init SA[m..n-1] */
// for(i = m - 1; 0 <= i; --i) {
// j = SA[i], SA[i] = 0;
// SA[--B[T[j]]] = j;
// }
// if(isbwt == false) { induceSA(T, SA, C, B, n, k); }
// else { pidx = computeBWT(T, SA, C, B, n, k); }
// delete [] C;
// } else {
// sarray_type C, B;
// C = SA + n;
// B = ((1 < maxthreads) || (k <= (fs - k))) ? C + k : C;
// /* put all left-most S characters into their buckets */
// getCounts(T, C, n, k); getBuckets(C, B, k, true); /* find ends of buckets */
// #ifdef _OPENMP
// #pragma omp parallel for default(shared) private(i)
// #endif
// for(i = m; i < n; ++i) { SA[i] = 0; } /* init SA[m..n-1] */
// for(i = m - 1; 0 <= i; --i) {
// j = SA[i], SA[i] = 0;
// SA[--B[T[j]]] = j;
// }
// if(isbwt == false) { induceSA(T, SA, C, B, n, k); }
// else { pidx = computeBWT(T, SA, C, B, n, k); }
// }
//
// return pidx;
// #ifndef _OPENMP
// # undef maxthreads
// #endif
// }
//
// } /* namespace saisxx_private */
//
//
// /**
// * @brief Constructs the suffix array of a given string in linear time.
// * @param T[0..n-1] The input string. (random access iterator)
// * @param SA[0..n-1] The output array of suffixes. (random access iterator)
// * @param n The length of the given string.
// * @param k The alphabet size.
// * @return 0 if no error occurred, -1 or -2 otherwise.
// */
// template<typename string_type, typename sarray_type, typename index_type>
// int
// saisxx(string_type T, sarray_type SA, index_type n, index_type k = 256) {
// int err;
// if((n < 0) || (k <= 0)) { return -1; }
// if(n <= 1) { if(n == 1) { SA[0] = 0; } return 0; }
// try { err = saisxx_private::suffixsort(T, SA, 0U, n, k, false); }
// catch(...) { err = -2; }
// return err;
// }
//
// /**
// * @brief Constructs the burrows-wheeler transformed string of a given string in linear time.
// * @param T[0..n-1] The input string. (random access iterator)
// * @param U[0..n-1] The output string. (random access iterator)
// * @param A[0..n-1] The temporary array. (random access iterator)
// * @param n The length of the given string.
// * @param k The alphabet size.
// * @return The primary index if no error occurred, -1 or -2 otherwise.
// */
// template<typename string_type, typename sarray_type, typename index_type>
// index_type
// saisxx_bwt(string_type T, string_type U, sarray_type A, index_type n, index_type k = 256) {
// typedef typename std::iterator_traits<string_type>::value_type char_type;
// index_type i, pidx;
// if((n < 0) || (k <= 0)) { return -1; }
// if(n <= 1) { if(n == 1) { U[0] = T[0]; } return n; }
// try {
// pidx = saisxx_private::suffixsort(T, A, 0, n, k, true);
// if(0 <= pidx) {
// U[0] = T[n - 1];
// for(i = 0; i < pidx; ++i) { U[i + 1] = (char_type)A[i]; }
// for(i += 1; i < n; ++i) { U[i] = (char_type)A[i]; }
// pidx += 1;
// }
// } catch(...) { pidx = -2; }
// return pidx;
// }
//
//
// #endif /* __cplusplus */
// #endif /* _SAIS_HXX */
// /*
// * esa.hxx
// * Copyright (c) 2010 Daisuke Okanohara All Rights Reserved.
// *
// * Permission is hereby granted, free of charge, to any person
// * obtaining a copy of this software and associated documentation
// * files (the "Software"), to deal in the Software without
// * restriction, including without limitation the rights to use,
// * copy, modify, merge, publish, distribute, sublicense, and/or sell
// * copies of the Software, and to permit persons to whom the
// * Software is furnished to do so, subject to the following
// * conditions:
// *
// * The above copyright notice and this permission notice shall be
// * included in all copies or substantial portions of the Software.
// *
// * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// * OTHER DEALINGS IN THE SOFTWARE.
// */
//
// #ifndef _ESA_HXX
// #define _ESA_HXX
//
// #include <vector>
// #include <utility>
// #include <cassert>
// #include "sais.hxx"
//
// namespace esaxx_private {
// template<typename string_type, typename sarray_type, typename index_type>
// index_type suffixtree(string_type T, sarray_type SA, sarray_type L, sarray_type R, sarray_type D, index_type n){
// if (n == 0){
// return 0;
// }
// sarray_type Psi = L;
// Psi[SA[0]] = SA[n-1];
// for (index_type i = 1; i < n; ++i){
// Psi[SA[i]] = SA[i-1];
// }
//
// // Compare at most 2n log n charcters. Practically fastest
// // "Permuted Longest-Common-Prefix Array", Juha Karkkainen, CPM 09
// sarray_type PLCP = R;
// index_type h = 0;
// for (index_type i = 0; i < n; ++i){
// index_type j = Psi[i];
// while (i+h < n && j+h < n &&
// T[i+h] == T[j+h]){
// ++h;
// }
// PLCP[i] = h;
// if (h > 0) --h;
// }
//
// sarray_type H = L;
// for (index_type i = 0; i < n; ++i){
// H[i] = PLCP[SA[i]];
// }
// H[0] = -1;
//
// std::vector<std::pair<index_type, index_type> > S;
// S.push_back(std::make_pair((index_type)-1, (index_type)-1));
// size_t nodeNum = 0;
// for (index_type i = 0; ; ++i){
// std::pair<index_type, index_type> cur (i, (i == n) ? -1 : H[i]);
// std::pair<index_type, index_type> cand(S.back());
// while (cand.second > cur.second){
// if (i - cand.first > 1){
// L[nodeNum] = cand.first;
// R[nodeNum] = i;
// D[nodeNum] = cand.second;
// ++nodeNum;
// }
// cur.first = cand.first;
// S.pop_back();
// cand = S.back();
// }
// if (cand.second < cur.second){
// S.push_back(cur);
// }
// if (i == n) break;
// S.push_back(std::make_pair(i, n - SA[i] + 1));
// }
// return nodeNum;
// }
// }
//
// /**
// * @brief Build an enhanced suffix array of a given string in linear time
// * For an input text T, esaxx() builds an enhancd suffix array in linear time.
// * i-th internal node is represented as a triple (L[i], R[i], D[i]);
// * L[i] and R[i] is the left/right boundary of the suffix array as SA[L[i]....R[i]-1]
// * D[i] is the depth of the internal node
// * The number of internal node is at most N-1 and return the actual number by
// * @param T[0...n-1] The input string. (random access iterator)
// * @param SA[0...n-1] The output suffix array (random access iterator)
// * @param L[0...n-1] The output left boundary of internal node (random access iterator)
// * @param R[0...n-1] The output right boundary of internal node (random access iterator)
// * @param D[0...n-1] The output depth of internal node (random access iterator)
// * @param n The length of the input string
// * @param k The alphabet size
// * @pram nodeNum The output the number of internal node
// * @return 0 if succeded, -1 or -2 otherwise
// */
//
// template<typename string_type, typename sarray_type, typename index_type>
// int esaxx(string_type T, sarray_type SA, sarray_type L, sarray_type R, sarray_type D,
// index_type n, index_type k, index_type& nodeNum) {
// if ((n < 0) || (k <= 0)) return -1;
// int err = saisxx(T, SA, n, k);
// if (err != 0){
// return err;
// }
// nodeNum = esaxx_private::suffixtree(T, SA, L, R, D, n);
// return 0;
// }
//
//
// #endif // _ESA_HXX
// /*
// * esa.hxx
// * Copyright (c) 2010 Daisuke Okanohara All Rights Reserved.
// *
// * Permission is hereby granted, free of charge, to any person
// * obtaining a copy of this software and associated documentation
// * files (the "Software"), to deal in the Software without
// * restriction, including without limitation the rights to use,
// * copy, modify, merge, publish, distribute, sublicense, and/or sell
// * copies of the Software, and to permit persons to whom the
// * Software is furnished to do so, subject to the following
// * conditions:
// *
// * The above copyright notice and this permission notice shall be
// * included in all copies or substantial portions of the Software.
// *
// * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// * OTHER DEALINGS IN THE SOFTWARE.
// */
//
// #ifndef _ESA_HXX
// #define _ESA_HXX
//
// #include <vector>
// #include <utility>
// #include <cassert>
// #include "sais.hxx"
//
// namespace esaxx_private {
// template<typename string_type, typename sarray_type, typename index_type>
// index_type suffixtree(string_type T, sarray_type SA, sarray_type L, sarray_type R, sarray_type D, index_type n){
// if (n == 0){
// return 0;
// }
// sarray_type Psi = L;
// Psi[SA[0]] = SA[n-1];
// for (index_type i = 1; i < n; ++i){
// Psi[SA[i]] = SA[i-1];
// }
//
// // Compare at most 2n log n charcters. Practically fastest
// // "Permuted Longest-Common-Prefix Array", Juha Karkkainen, CPM 09
// sarray_type PLCP = R;
// index_type h = 0;
// for (index_type i = 0; i < n; ++i){
// index_type j = Psi[i];
// while (i+h < n && j+h < n &&
// T[i+h] == T[j+h]){
// ++h;
// }
// PLCP[i] = h;
// if (h > 0) --h;
// }
//
// sarray_type H = L;
// for (index_type i = 0; i < n; ++i){
// H[i] = PLCP[SA[i]];
// }
// H[0] = -1;
//
// std::vector<std::pair<index_type, index_type> > S;
// S.push_back(std::make_pair((index_type)-1, (index_type)-1));
// size_t nodeNum = 0;
// for (index_type i = 0; ; ++i){
// std::pair<index_type, index_type> cur (i, (i == n) ? -1 : H[i]);
// std::pair<index_type, index_type> cand(S.back());
// while (cand.second > cur.second){
// if (i - cand.first > 1){
// L[nodeNum] = cand.first;
// R[nodeNum] = i;
// D[nodeNum] = cand.second;
// ++nodeNum;
// }
// cur.first = cand.first;
// S.pop_back();
// cand = S.back();
// }
// if (cand.second < cur.second){
// S.push_back(cur);
// }
// if (i == n) break;
// S.push_back(std::make_pair(i, n - SA[i] + 1));
// }
// return nodeNum;
// }
// }
//
// /**
// * @brief Build an enhanced suffix array of a given string in linear time
// * For an input text T, esaxx() builds an enhancd suffix array in linear time.
// * i-th internal node is represented as a triple (L[i], R[i], D[i]);
// * L[i] and R[i] is the left/right boundary of the suffix array as SA[L[i]....R[i]-1]
// * D[i] is the depth of the internal node
// * The number of internal node is at most N-1 and return the actual number by
// * @param T[0...n-1] The input string. (random access iterator)
// * @param SA[0...n-1] The output suffix array (random access iterator)
// * @param L[0...n-1] The output left boundary of internal node (random access iterator)
// * @param R[0...n-1] The output right boundary of internal node (random access iterator)
// * @param D[0...n-1] The output depth of internal node (random access iterator)
// * @param n The length of the input string
// * @param k The alphabet size
// * @pram nodeNum The output the number of internal node
// * @return 0 if succeded, -1 or -2 otherwise
// */
//
// template<typename string_type, typename sarray_type, typename index_type>
// int esaxx(string_type T, sarray_type SA, sarray_type L, sarray_type R, sarray_type D,
// index_type n, index_type k, index_type& nodeNum) {
// if ((n < 0) || (k <= 0)) return -1;
// std::count<<"Here"<<std::endl;
// int err = saisxx(T, SA, n, k);
// if (err != 0){
// return err;
// }
// std::cout<<"suffixtree"<<std::endl;
// nodeNum = esaxx_private::suffixtree(T, SA, L, R, D, n);
// std::count<<"ok"<<std::endl;
// return 0;
// }
//
//
// #endif // _ESA_HXX
#include "esa.hxx"
extern "C"{
int esaxx_int32(char32_t* T, int32_t* SA, int32_t* L, int32_t* R, int32_t* D,
int32_t n, int32_t k, int32_t &nodeNum) {
return esaxx(T, SA, L, R, D, n, k, nodeNum);
}
}

77
src/lib.rs Normal file
View File

@ -0,0 +1,77 @@
//! Small wrapper around sentencepiece's esaxx suffix array C++ library.
//! Usage
//!
//! ```rust
//! let string = "abracadabra".to_string();
//! let chars: Vec<_> = string.chars().collect();
//! let n = chars.len();
//! let mut sa = vec![0; n];
//! let mut l = vec![0; n];
//! let mut r = vec![0; n];
//! let mut d = vec![0; n];
//! let mut node_num = 0;
//!
//! let alphabet_size = 0x110000; // All UCS4 range.
//! unsafe {
//! esaxx_int32(
//! chars.as_ptr() as *mut u32,
//! sa.as_mut_ptr(),
//! l.as_mut_ptr(),
//! r.as_mut_ptr(),
//! d.as_mut_ptr(),
//! n.try_into().unwrap(),
//! alphabet_size,
//! &mut node_num,
//! );
//! }
//! ```
extern "C" {
pub fn esaxx_int32(
// This is char32
T: *const u32,
SA: *mut i32,
L: *mut i32,
R: *mut i32,
D: *mut i32,
n: u32,
k: u32,
nodeNum: &mut u32,
);
}
#[cfg(test)]
mod tests {
use super::*;
use std::convert::TryInto;
#[test]
fn test_esaxx() {
let string = "abracadabra".to_string();
let chars: Vec<_> = string.chars().collect();
let n = chars.len();
let mut sa = vec![0; n];
let mut l = vec![0; n];
let mut r = vec![0; n];
let mut d = vec![0; n];
let mut node_num = 0;
let alphabet_size = 0x110000; // All UCS4 range.
unsafe {
esaxx_int32(
chars.as_ptr() as *mut u32,
sa.as_mut_ptr(),
l.as_mut_ptr(),
r.as_mut_ptr(),
d.as_mut_ptr(),
n.try_into().unwrap(),
alphabet_size,
&mut node_num,
);
}
assert_eq!(node_num, 5);
assert_eq!(sa, vec![10, 7, 0, 3, 5, 8, 1, 4, 6, 9, 2]);
assert_eq!(l, vec![1, 0, 5, 9, 0, 0, 3, 0, 0, 0, 2]);
assert_eq!(r, vec![3, 5, 7, 11, 11, 1, 0, 1, 0, 0, 0]);
assert_eq!(d, vec![4, 1, 3, 2, 0, 0, 0, 0, 0, 0, 0]);
}
}

366
src/sais.hxx Normal file
View File

@ -0,0 +1,366 @@
/*
* sais.hxx for sais-lite
* Copyright (c) 2008-2009 Yuta Mori All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef _SAIS_HXX
#define _SAIS_HXX 1
#ifdef __cplusplus
#ifdef __INTEL_COMPILER
#pragma warning(disable : 383 981 1418)
// for icc 64-bit
//#define __builtin_vsnprintf(a, b, c, d) __builtin_vsnprintf(a, b, c, (char *)d)
#endif
#include <iterator>
#ifdef _OPENMP
# include <omp.h>
#endif
namespace saisxx_private {
/* find the start or end of each bucket */
template<typename string_type, typename bucket_type, typename index_type>
void
getCounts(const string_type T, bucket_type C, index_type n, index_type k) {
#ifdef _OPENMP
bucket_type D;
index_type i, j, p, sum, first, last;
int thnum, maxthreads = omp_get_max_threads();
#pragma omp parallel default(shared) private(D, i, thnum, first, last)
{
thnum = omp_get_thread_num();
D = C + thnum * k;
first = n / maxthreads * thnum;
last = (thnum < (maxthreads - 1)) ? n / maxthreads * (thnum + 1) : n;
for(i = 0; i < k; ++i) { D[i] = 0; }
for(i = first; i < last; ++i) { ++D[T[i]]; }
}
if(1 < maxthreads) {
#pragma omp parallel for default(shared) private(i, j, p, sum)
for(i = 0; i < k; ++i) {
for(j = 1, p = i + k, sum = C[i]; j < maxthreads; ++j, p += k) {
sum += C[p];
}
C[i] = sum;
}
}
#else
index_type i;
for(i = 0; i < k; ++i) { C[i] = 0; }
for(i = 0; i < n; ++i) { ++C[T[i]]; }
#endif
}
template<typename bucket_type, typename index_type>
void
getBuckets(const bucket_type C, bucket_type B, index_type k, bool end) {
index_type i, sum = 0;
if(end) { for(i = 0; i < k; ++i) { sum += C[i]; B[i] = sum; } }
else { for(i = 0; i < k; ++i) { sum += C[i]; B[i] = sum - C[i]; } }
}
/* compute SA and BWT */
template<typename string_type, typename sarray_type,
typename bucket_type, typename index_type>
void
induceSA(string_type T, sarray_type SA, bucket_type C, bucket_type B,
index_type n, index_type k) {
typedef typename std::iterator_traits<string_type>::value_type char_type;
sarray_type b;
index_type i, j;
char_type c0, c1;
/* compute SAl */
if(C == B) { getCounts(T, C, n, k); }
getBuckets(C, B, k, false); /* find starts of buckets */
b = SA + B[c1 = T[j = n - 1]];
*b++ = ((0 < j) && (T[j - 1] < c1)) ? ~j : j;
for(i = 0; i < n; ++i) {
j = SA[i], SA[i] = ~j;
if(0 < j) {
if((c0 = T[--j]) != c1) { B[c1] = b - SA; b = SA + B[c1 = c0]; }
*b++ = ((0 < j) && (T[j - 1] < c1)) ? ~j : j;
}
}
/* compute SAs */
if(C == B) { getCounts(T, C, n, k); }
getBuckets(C, B, k, true); /* find ends of buckets */
for(i = n - 1, b = SA + B[c1 = 0]; 0 <= i; --i) {
if(0 < (j = SA[i])) {
if((c0 = T[--j]) != c1) { B[c1] = b - SA; b = SA + B[c1 = c0]; }
*--b = ((j == 0) || (T[j - 1] > c1)) ? ~j : j;
} else {
SA[i] = ~j;
}
}
}
template<typename string_type, typename sarray_type,
typename bucket_type, typename index_type>
int
computeBWT(string_type T, sarray_type SA, bucket_type C, bucket_type B,
index_type n, index_type k) {
typedef typename std::iterator_traits<string_type>::value_type char_type;
sarray_type b;
index_type i, j, pidx = -1;
char_type c0, c1;
/* compute SAl */
if(C == B) { getCounts(T, C, n, k); }
getBuckets(C, B, k, false); /* find starts of buckets */
b = SA + B[c1 = T[j = n - 1]];
*b++ = ((0 < j) && (T[j - 1] < c1)) ? ~j : j;
for(i = 0; i < n; ++i) {
if(0 < (j = SA[i])) {
SA[i] = ~(c0 = T[--j]);
if(c0 != c1) { B[c1] = b - SA; b = SA + B[c1 = c0]; }
*b++ = ((0 < j) && (T[j - 1] < c1)) ? ~j : j;
} else if(j != 0) {
SA[i] = ~j;
}
}
/* compute SAs */
if(C == B) { getCounts(T, C, n, k); }
getBuckets(C, B, k, true); /* find ends of buckets */
for(i = n - 1, b = SA + B[c1 = 0]; 0 <= i; --i) {
if(0 < (j = SA[i])) {
SA[i] = (c0 = T[--j]);
if(c0 != c1) { B[c1] = b - SA; b = SA + B[c1 = c0]; }
*--b = ((0 < j) && (T[j - 1] > c1)) ? ~((index_type)T[j - 1]) : j;
} else if(j != 0) {
SA[i] = ~j;
} else {
pidx = i;
}
}
return pidx;
}
/* find the suffix array SA of T[0..n-1] in {0..k}^n
use a working space (excluding s and SA) of at most 2n+O(1) for a constant alphabet */
template<typename string_type, typename sarray_type, typename index_type>
int
suffixsort(string_type T, sarray_type SA,
index_type fs, index_type n, index_type k,
bool isbwt) {
typedef typename std::iterator_traits<string_type>::value_type char_type;
sarray_type RA;
index_type i, j, m, p, q, plen, qlen, name;
int pidx = 0;
bool diff;
int c;
#ifdef _OPENMP
int maxthreads = omp_get_max_threads();
#else
# define maxthreads 1
#endif
char_type c0, c1;
/* stage 1: reduce the problem by at least 1/2
sort all the S-substrings */
if(fs < (maxthreads * k)) {
index_type *C, *B;
if((C = new index_type[maxthreads * k]) == 0) { return -2; }
B = (1 < maxthreads) ? C + k : C;
getCounts(T, C, n, k); getBuckets(C, B, k, true); /* find ends of buckets */
#ifdef _OPENMP
#pragma omp parallel for default(shared) private(i)
#endif
for(i = 0; i < n; ++i) { SA[i] = 0; }
for(i = n - 2, c = 0, c1 = T[n - 1]; 0 <= i; --i, c1 = c0) {
if((c0 = T[i]) < (c1 + c)) { c = 1; }
else if(c != 0) { SA[--B[c1]] = i + 1, c = 0; }
}
induceSA(T, SA, C, B, n, k);
delete [] C;
} else {
sarray_type C, B;
C = SA + n;
B = ((1 < maxthreads) || (k <= (fs - k))) ? C + k : C;
getCounts(T, C, n, k); getBuckets(C, B, k, true); /* find ends of buckets */
#ifdef _OPENMP
#pragma omp parallel for default(shared) private(i)
#endif
for(i = 0; i < n; ++i) { SA[i] = 0; }
for(i = n - 2, c = 0, c1 = T[n - 1]; 0 <= i; --i, c1 = c0) {
if((c0 = T[i]) < (c1 + c)) { c = 1; }
else if(c != 0) { SA[--B[c1]] = i + 1, c = 0; }
}
induceSA(T, SA, C, B, n, k);
}
/* compact all the sorted substrings into the first m items of SA
2*m must be not larger than n (proveable) */
#ifdef _OPENMP
#pragma omp parallel for default(shared) private(i, j, p, c0, c1)
for(i = 0; i < n; ++i) {
p = SA[i];
if((0 < p) && (T[p - 1] > (c0 = T[p]))) {
for(j = p + 1; (j < n) && (c0 == (c1 = T[j])); ++j) { }
if((j < n) && (c0 < c1)) { SA[i] = ~p; }
}
}
for(i = 0, m = 0; i < n; ++i) { if((p = SA[i]) < 0) { SA[m++] = ~p; } }
#else
for(i = 0, m = 0; i < n; ++i) {
p = SA[i];
if((0 < p) && (T[p - 1] > (c0 = T[p]))) {
for(j = p + 1; (j < n) && (c0 == (c1 = T[j])); ++j) { }
if((j < n) && (c0 < c1)) { SA[m++] = p; }
}
}
#endif
j = m + (n >> 1);
#ifdef _OPENMP
#pragma omp parallel for default(shared) private(i)
#endif
for(i = m; i < j; ++i) { SA[i] = 0; } /* init the name array buffer */
/* store the length of all substrings */
for(i = n - 2, j = n, c = 0, c1 = T[n - 1]; 0 <= i; --i, c1 = c0) {
if((c0 = T[i]) < (c1 + c)) { c = 1; }
else if(c != 0) { SA[m + ((i + 1) >> 1)] = j - i - 1; j = i + 1; c = 0; }
}
/* find the lexicographic names of all substrings */
for(i = 0, name = 0, q = n, qlen = 0; i < m; ++i) {
p = SA[i], plen = SA[m + (p >> 1)], diff = true;
if(plen == qlen) {
for(j = 0; (j < plen) && (T[p + j] == T[q + j]); ++j) { }
if(j == plen) { diff = false; }
}
if(diff != false) { ++name, q = p, qlen = plen; }
SA[m + (p >> 1)] = name;
}
/* stage 2: solve the reduced problem
recurse if names are not yet unique */
if(name < m) {
RA = SA + n + fs - m;
for(i = m + (n >> 1) - 1, j = m - 1; m <= i; --i) {
if(SA[i] != 0) { RA[j--] = SA[i] - 1; }
}
if(suffixsort(RA, SA, fs + n - m * 2, m, name, false) != 0) { return -2; }
for(i = n - 2, j = m - 1, c = 0, c1 = T[n - 1]; 0 <= i; --i, c1 = c0) {
if((c0 = T[i]) < (c1 + c)) { c = 1; }
else if(c != 0) { RA[j--] = i + 1, c = 0; } /* get p1 */
}
#ifdef _OPENMP
#pragma omp parallel for default(shared) private(i)
#endif
for(i = 0; i < m; ++i) { SA[i] = RA[SA[i]]; } /* get index in s */
}
/* stage 3: induce the result for the original problem */
if(fs < (maxthreads * k)) {
index_type *B, *C;
if((C = new index_type[maxthreads * k]) == 0) { return -2; }
B = (1 < maxthreads) ? C + k : C;
/* put all left-most S characters into their buckets */
getCounts(T, C, n, k); getBuckets(C, B, k, true); /* find ends of buckets */
#ifdef _OPENMP
#pragma omp parallel for default(shared) private(i)
#endif
for(i = m; i < n; ++i) { SA[i] = 0; } /* init SA[m..n-1] */
for(i = m - 1; 0 <= i; --i) {
j = SA[i], SA[i] = 0;
SA[--B[T[j]]] = j;
}
if(isbwt == false) { induceSA(T, SA, C, B, n, k); }
else { pidx = computeBWT(T, SA, C, B, n, k); }
delete [] C;
} else {
sarray_type C, B;
C = SA + n;
B = ((1 < maxthreads) || (k <= (fs - k))) ? C + k : C;
/* put all left-most S characters into their buckets */
getCounts(T, C, n, k); getBuckets(C, B, k, true); /* find ends of buckets */
#ifdef _OPENMP
#pragma omp parallel for default(shared) private(i)
#endif
for(i = m; i < n; ++i) { SA[i] = 0; } /* init SA[m..n-1] */
for(i = m - 1; 0 <= i; --i) {
j = SA[i], SA[i] = 0;
SA[--B[T[j]]] = j;
}
if(isbwt == false) { induceSA(T, SA, C, B, n, k); }
else { pidx = computeBWT(T, SA, C, B, n, k); }
}
return pidx;
#ifndef _OPENMP
# undef maxthreads
#endif
}
} /* namespace saisxx_private */
/**
* @brief Constructs the suffix array of a given string in linear time.
* @param T[0..n-1] The input string. (random access iterator)
* @param SA[0..n-1] The output array of suffixes. (random access iterator)
* @param n The length of the given string.
* @param k The alphabet size.
* @return 0 if no error occurred, -1 or -2 otherwise.
*/
template<typename string_type, typename sarray_type, typename index_type>
int
saisxx(string_type T, sarray_type SA, index_type n, index_type k = 256) {
int err;
if((n < 0) || (k <= 0)) { return -1; }
if(n <= 1) { if(n == 1) { SA[0] = 0; } return 0; }
try { err = saisxx_private::suffixsort(T, SA, index_type(0), n, k, false); }
catch(...) { err = -2; }
return err;
}
/**
* @brief Constructs the burrows-wheeler transformed string of a given string in linear time.
* @param T[0..n-1] The input string. (random access iterator)
* @param U[0..n-1] The output string. (random access iterator)
* @param A[0..n-1] The temporary array. (random access iterator)
* @param n The length of the given string.
* @param k The alphabet size.
* @return The primary index if no error occurred, -1 or -2 otherwise.
*/
template<typename string_type, typename sarray_type, typename index_type>
index_type
saisxx_bwt(string_type T, string_type U, sarray_type A, index_type n, index_type k = 256) {
typedef typename std::iterator_traits<string_type>::value_type char_type;
index_type i, pidx;
if((n < 0) || (k <= 0)) { return -1; }
if(n <= 1) { if(n == 1) { U[0] = T[0]; } return n; }
try {
pidx = saisxx_private::suffixsort(T, A, 0, n, k, true);
if(0 <= pidx) {
U[0] = T[n - 1];
for(i = 0; i < pidx; ++i) { U[i + 1] = (char_type)A[i]; }
for(i += 1; i < n; ++i) { U[i] = (char_type)A[i]; }
pidx += 1;
}
} catch(...) { pidx = -2; }
return pidx;
}
#endif /* __cplusplus */
#endif /* _SAIS_HXX */