Files
Weil-Pairing/Miller.cpp
2015-05-16 20:49:07 +08:00

708 lines
14 KiB
C++

#include"elliptic.h"
FPOINT * newfpoint(lint x, lint y)
{
FPOINT * result = (FPOINT *)malloc(sizeof(fpoint));
result->x = x;
result->y = y;
return result;
}
POINT * newpoint(lint a, lint b, lint c, lint d)
{
POINT * result = (POINT *)malloc(sizeof(point));
result->x = newfpoint(a,b);
result->y = newfpoint(c,d);
return result;
}
CURVE * newcurve(lint A, lint B)
{
CURVE * result = (CURVE *)malloc(sizeof(curve));
result->A = newfpoint(0,A);
result->B = newfpoint(0,B);
return result;
}
void freepoint(POINT * a)
{
free(a->x);
free(a->y);
}
//absolute value modulo p
lint ABS(lint a, lint p)
{
return (a>=0)?a%p:(p-(-a)%p)%p;
}
//extended euclid algorithm
lint gcdEx(lint a, lint b, lint *x, lint *y)
{
if(b==0){
*x = 1,*y = 0;
return a;
}
else{
lint r = gcdEx(b, a%b, x, y);
lint t = *x;
*x = *y;
*y = t - a/b * *y;
return r;
}
}
lint powermod(lint a, lint n, lint p)
{
lint result, DB;
result = 1;
DB = a;
while(n>0){
if(n&1)result = (result*DB)%p;
DB = (DB*DB)%p;
n >>= 1;
}
return ABS(result,p);
}
//modulo inverse
lint inver(lint a, lint p)
{
lint s,t;
if(gcdEx(a,p,&s,&t)!=1)return 0;
return ABS(s,p);
}
lint randomnonq(lint p)
{
lint i, k = (p-1)>>1;
for(i = 1;i < p;i++){
if(powermod(i,k,p) != 1)break;
}
return i;
}
lint modsquareroot(lint a, lint p)
{
if(powermod(a,(p-1)>>1,p) != 1)return -1;
lint r = (p-1)>>1;
lint b = randomnonq(p);
lint x = r, y = 0;
while(!(x&1)){
x >>= 1; y >>= 1;
if(ABS(powermod(a,x,p)*powermod(b,y,p),p) != 1)y += r;
}
return ABS(powermod(a,(x+1)>>1,p)*powermod(b,y>>1,p),p);
}
bool millerrabin(lint n, lint r)
{
if(n <= 1)return false;
lint s = 0, t = n - 1;
while(!(t&1)){
s++; t >>= 1;
}
while(r--){
lint b = rand()%(n-1) + 2;
lint r0 = powermod(b,t,n);
lint s0 = s - 1;
lint c = powermod(b,n-1,n);
if(r0 == 1 || r0 == n - 1)continue;
if(s0 < 1)return false;
while(s0--){
r0 = powermod(r0,2,n);
if(r0 == n-1)break;
if(s0 == 0)return false;
}
}
return true;
}
lint largerandom(lint n)
{
lint a = rand()%10000, b = rand()%10000;
return (a+b*10000)%n;
}
lint randomgoodprime(lint n)
{
lint p = 4;
while(!millerrabin(p,10))p = 12*largerandom(n)+11;
return p;
}
lint randonsafeprime(lint n)
{
lint p;
while(p = randomgoodprime(n)){
if(millerrabin((p+1)/12,2))break;
}
return p;
}
//field element equlity judgement
bool equl(FPOINT * a, FPOINT * b)
{
if(a->x == b->x && a->y == b->y)return true;
return false;
}
bool equln(FPOINT * a, FPOINT * b, lint p)
{
if(a->x == ABS(-b->x,p)&&a->y == ABS(-b->y,p))return true;
return false;
}
bool pequl(POINT * a, POINT * b)
{
return equl(a->x,b->x)&&equl(a->y,b->y);
}
void showelement(FPOINT * p)
{
printf("(%lld,%lld)\n",p->x,p->y);
}
FPOINT * fneg(FPOINT * a, lint p, FPOINT * result)
{
result->x = ABS(-a->x,p);
result->y = ABS(-a->y,p);
return result;
}
//field elements addition
FPOINT * fadd(FPOINT * a, FPOINT * b, lint p, FPOINT * result)
{
lint x = ABS(a->x + b->x,p);
lint y = ABS(a->y + b->y,p);
result->x = x;
result->y = y;
return result;
}
//field elements minus
FPOINT * fminus(FPOINT * a, FPOINT * b, lint p, FPOINT * result)
{
lint x = ABS(a->x - b->x,p);
lint y = ABS(a->y - b->y,p);
result->x = x;
result->y = y;
return result;
}
//field elements multiplication
FPOINT * fmulti(FPOINT * a, FPOINT * b, lint p, FPOINT * result)
{
lint x = ABS(a->y*b->x + a->x*b->y,p);
lint y = ABS(a->y*b->y - a->x*b->x,p);
result->x = x;
result->y = y;
return result;
}
//field assignment
FPOINT * assign(FPOINT * a, FPOINT * b)
{
a->x = b->x;
a->y = b->y;
return a;
}
//field element expontinal
FPOINT * fpower(FPOINT * a, lint n, lint p, FPOINT * result)
{
n = n%(p*p - 1);
FPOINT * DB = newfpoint(0,0);
assign(DB,a);
assign(result,ONE);
while(n > 0){
if(n&1)fmulti(DB,result,p,result);
fmulti(DB,DB,p,DB);
n >>= 1;
}
free(DB);
return result;
}
//field element inverse
FPOINT * inverse(FPOINT * a, lint p, FPOINT * result)
{
if(a->x == 0){
result->x = 0;
result->y = inver(a->y,p);
return result;
}
lint x = inver(ABS(-a->y*a->y*inver(a->x,p)-a->x,p),p);
lint y = ABS(-a->y*inver(a->x,p)*x,p);
result->x = x;
result->y = y;
return result;
}
//multiply by number
FPOINT * fnmulti(FPOINT * a, lint b, lint p, FPOINT * result)
{
result->x = ABS(a->x*b,p);
result->y = ABS(a->y*b,p);
return result;
}
POINT * passign(POINT * a, POINT * b)
{
assign(a->x,b->x);
assign(a->y,b->y);
return a;
}
bool testpoint(POINT * p, CURVE * c, lint p1)
{
if(pequl(p,O))return true;
FPOINT * x = newfpoint(0,0);
FPOINT * y = newfpoint(0,0);
assign(x,p->x);
fadd(fadd(fpower(x,3,p1,x),fmulti(c->A,p->x,p1,y),p1,x),c->B,p1,x);
fpower(p->y,2,p1,y);
return equl(x,y);
}
void showpoint(POINT * p)
{
printf("\n[(%lld,%lld),(%lld,%lld)]\n",p->x->x,p->x->y,p->y->x,p->y->y);
}
POINT * pneg(POINT * a, lint p, POINT * result)
{
if(pequl(a,O)){
passign(result,O);
return result;
}
assign(result->x,a->x);
fneg(a->y,p,result->y);
return result;
}
//curve polint additon
POINT * add(POINT * p1, POINT * p2, CURVE * c, lint p, POINT * result)
{
if(pequl(p1,O))return passign(result,p2);
if(pequl(p2,O))return passign(result,p1);
if(equl(p1->x,p2->x)&&equln(p1->y,p2->y,p)){
return passign(result,O);
}
FPOINT * x, * y, *lambda;
x = newfpoint(0,0);
y = newfpoint(0,0);
lambda = (FPOINT *)malloc(sizeof(fpoint));
if(equl(p1->x,p2->x)){
fadd(fnmulti(fpower(p1->x,2,p,lambda),3,p,lambda),c->A,p,lambda);
fmulti(lambda,inverse(fnmulti(p1->y,2,p,x),p,x),p,lambda);
}else{
fminus(p2->y,p1->y,p,lambda);
fmulti(lambda,inverse(fminus(p2->x,p1->x,p,x),p,x),p,lambda);
}
fminus(fminus(fpower(lambda,2,p,x),p1->x,p,x),p2->x,p,x);
fminus(fmulti(fminus(p1->x,x,p,y),lambda,p,y),p1->y,p,y);
assign(result->x,x);
assign(result->y,y);
free(lambda);
free(x);
free(y);
return result;
}
POINT * minus(POINT * p1, POINT * p2, CURVE * c, lint p, POINT * result)
{
POINT * temp = newpoint(0,0,0,0);
add(pneg(p2,p,temp),p1,c,p,result);
freepoint(temp);
return result;
}
//power of points addition
POINT * ppower(POINT * a, lint n, CURVE * c, lint p, POINT * result)
{
POINT * DB;
DB = newpoint(0,0,0,0);
passign(DB,a);
passign(result,O);
while(n > 0){
if(n&1)add(DB,result,c,p,result);
add(DB,DB,c,p,DB);
n >>= 1;
}
freepoint(DB);
return result;
}
POINT * randompoint(CURVE * c, lint p)
{
POINT * result = newpoint(0,0,0,0);
lint x, y;
if((p-1)%3 && equl(c->A,ZERO)){
y = largerandom(p);
lint r = inver(3,p-1);
x = powermod(y*y-1, r, p);
}else{
while(1){
x = largerandom(p);
y = ABS(powermod(x,3,p) + c->A->y*x + c->B->y,p);
if((y=modsquareroot(y,p)) != -1)break;
}
}
if(rand()%2)y = ABS(-y,p);
result->x = newfpoint(0,x);
result->y = newfpoint(0,y);
return result;
}
FPOINT * primitroot(lint p)
{
lint x, y;
y = inver(2,p);
if((x = modsquareroot(-3,p)) != -1){
y = ABS(x*y - y,p);
return newfpoint(0,y);
}
x = modsquareroot(ABS(y*y - y + 1,p),p);
return newfpoint(x,ABS(-y,p));
}
POINT * phi(POINT * a, lint p, POINT * result)
{
if(pequl(a,O)){
passign(result,a);
return result;
}
FPOINT * temp = primitroot(p);
fmulti(a->x,temp,p,result->x);
assign(result->y, a->y);
free(temp);
return result;
}
FPOINT * evalueline(POINT * a, POINT * b, POINT * in, lint p, CURVE * c, FPOINT * result)
{
if(pequl(a,O)&&pequl(b,O)){
assign(result,ONE);
return result;
}
if(pequl(a,O))pneg(b,p,a);
if(pequl(b,O))pneg(a,p,b);
FPOINT * temp1, *temp2;
temp1 = newfpoint(0,0); temp2 = newfpoint(0,0);
if(pequl(a,b)){
/*
targent line of y^2 = x^3 + Ax + B
so, F(x,y) = y^2 - x^3 -Ax -B we have
F_x = -3x^2 - A, F_y = 2y
from elmentary calculas we have the targent line is
F_x(x - x_1) + F_y(y - y_1) = 0
*/
fadd(fnmulti(fpower(a->x,2,p,temp1),3,p,temp1),c->A,p,temp1); //temp1 = 3*x1*x1 + A
fminus(in->x,a->x,p,temp2); // temp2 = x3 - x1
fmulti(temp1,temp2,p,result); // result = temp1*temp2
fmulti(fnmulti(a->y,2,p,temp1),fminus(in->y,a->y,p,temp2),p,temp1); // temp1 = 2*y1*(y3-y1)
fminus(result,temp1,p,result); // result = result - temp1 = (3*x1*x1 + A)(x3 - x1) - 2*y1(y3 - y1)
}else{
fmulti(fminus(in->x,b->x,p,temp1),fminus(a->y,b->y,p,temp2),p,result); // result = (x3 - x2)*(y1 - y2)
fmulti(fminus(a->x,b->x,p,temp1),fminus(in->y,b->y,p,temp2),p,temp1); // temp1 = (x1 - x2)*(y3 - y2)
fminus(result,temp1,p,result); // result = result - temp1 = (x3 - x2)*(y1 - y2) - (x1 - x2)*(y3 - y2)
}
free(temp1); free(temp2);
return result;
}
char * pointasstring(POINT * p)
{
char * result = (char *)malloc(sizeof(50));
sprintf(result,"[(%lld,%lld),(%lld,%lld)]",p->x->x,p->x->y,p->y->x,p->y->y);
return result;
}
bool evaluelinedivi(POINT * a, POINT * b, POINT * in, CURVE * c, lint p, FPOINT * result)
{
FPOINT * temp = newfpoint(0,0);
POINT * tp = newpoint(0,0,0,0), * tp1 = newpoint(0,0,0,0);
if(pequl(a,O)&&pequl(b,O)){
assign(result,ONE);
return false;
}
if(pequl(a,O))pneg(b,p,a);
if(pequl(b,O))pneg(a,p,b);
add(a,b,c,p,tp);
if(equl(tp->x,in->x) || pequl(a,in) || pequl(b,in) || pequl(in,O)){
assign(result,ONE);
return false;
}
if(pequl(tp,O)){
fminus(in->x,a->x,p,result);
}else{
evalueline(a,b,in,p,c,result);
inverse(fminus(in->x, tp->x, p, temp),p,temp);
fmulti(result,temp,p,result);
}
return true;
}
bool miller(POINT * a, POINT * b, CURVE * c, lint p, lint m, FPOINT * f)
{
FPOINT * temp = newfpoint(0,0);
POINT * t = newpoint(0,0,0,0);
assign(f,ONE); //f = 1
passign(t,a); // t = a
lint i = 0, array[(int)logb((double)m)+1];
while(m){
if(m&1)array[i] = 1;
else
array[i] = 0;
m >>= 1;
i++;
}
for(lint j = i - 2;j >= 0; j--){
fmulti(f,f,p,f); // f = f*f
if(!evaluelinedivi(t,t,b,c,p,temp)){ // temp = l(b) / l'(b) where l is the targent line of t at curve c, and l' is the line through 2t and -2t
free(temp); freepoint(t);
return false;
}
fmulti(f,temp,p,f); // f = f * l(b) / l'(b)
add(t,t,c,p,t); // t = 2t
if(array[j] == 1){
if(!evaluelinedivi(t,a,b,c,p,temp)){ // l is the line through t and a, l' throug t+a and -(t+a)
free(temp); freepoint(t);
return false;
}
fmulti(f,temp,p,f); // f = temp * f
add(t,a,c,p,t); // t = a + t
}
}
free(temp); freepoint(t);
return true;
}
//the following function works only for supersingular elliptic curve
lint findorder(POINT * po, CURVE * c, lint p)
{
POINT * t = newpoint(0,0,0,0);
lint m = (p+1)/12;
lint list[6] = {1,2,3,4,6,12};
for(int i = 0;i < 12;i++){
passign(t, po);
if(i<6 && pequl(ppower(t,list[i],c,p,t),O)){
freepoint(t);
return list[i];
}else if(i >= 6 && pequl(ppower(t,m*list[i%6],c,p,t),O)){
freepoint(t);
return m*list[i%6];
}
}
freepoint(t);
return p+1;
}
bool weilpairing(POINT * a, POINT * b, CURVE * c, lint p, FPOINT * result)
{
lint m = findorder(a,c,p);
lint n = findorder(b,c,p);
FPOINT * t1, * t2, * t3, *t4;
t1 = newfpoint(0,0); t2 = newfpoint(0,0); t3 = newfpoint(0,0); t4 = newfpoint(0,0);
if(n%m == 0)m = n;
else if(m%n == 0)n = m;
else
return false;
POINT * S = newpoint(0,0,0,0), *temp = newpoint(0,0,0,0), *temp1 = newpoint(0,0,0,0), *temp2 = newpoint(0,0,0,0);
while(true){
freepoint(S);
S = randompoint(c,p); // random point on c
if(rand()%2)phi(S,p,S);
if(!miller(a,add(S,b,c,p,temp),c,p,n,t1))continue; // t1 = f_a(S+b)
if(!miller(a,S,c,p,n,t2))continue; // t2 = f_a(S)
if(!miller(b,minus(a,S,c,p,temp),c,p,n,t3))continue; // t3 = f_b(a-S)
if(!miller(b,pneg(S,p,temp),c,p,n,t4))continue; // t4 = f_b(-S)
assign(result,t1); fmulti(result,t4,p,result); // result = f_a(S+b) * f_b(-S)
fmulti(result,inverse(t2,p,t1),p,result); // result = f_a(S+b) * f_b(-S) / f_a(S)
fmulti(result,inverse(t3,p,t1),p,result); // result = f_a(S+b) * f_b(-S) / f_a(S) * f_b(a-S)
// l through a and -S, l' through a - 2S and 2S - a, evaluation at S + b
if(!evaluelinedivi(a,pneg(S,p,temp1),add(S,b,c,p,temp2),c,p,t1))continue;
// l through a and -S, l' through a - 2S and 2S - a, evaluation at S
if(!evaluelinedivi(a,pneg(S,p,temp1),S,c,p,t2))continue;
// l through b and S, l' through a + 2S and -2S - a, evaluation at a - S
if(!evaluelinedivi(b,S,minus(a,S,c,p,temp2),c,p,t3))continue;
// l through b and S, l' through a + 2S and -2S - a, evaluation at -S
if(!evaluelinedivi(b,S,pneg(S,p,temp2),c,p,t4))continue;
fpower(t1,n,p,t1); fpower(t2,n,p,t2); fpower(t3,n,p,t3); fpower(t4,n,p,t4); // t1 = t1^n ... t4 = t4^n
fmulti(result,t1,p,result);fmulti(result,t4,p,result); // result = h_b(-S) * h_a(S+b) * f_a(S) * f_b(a-S) / f_a(S+b) * f_b(-S)
fmulti(result,inverse(t2,p,t1),p,result);
fmulti(result,inverse(t3,p,t1),p,result);
inverse(result,p,result);
// result = h_b(-S) * h_a(S+b) * f_a(S) * f_b(a-S) / f_a(S+b) * f_b(-S) * h_a(S) * h_b(a-S)
// let f_a' = h_a/f_a , f_b' = h_b/f_b
//
// since div(h_a) = (a) + (-S) + (S - a) - 3(O) - (S -a) - (a -S) + 2(O) = (a) + (-S) - (a - S) - (O)
// div(h_b) = (b) + (S) - (b+S) - (O)
break;
}
free(t1); free(t2); free(t3); free(t4);
freepoint(S); freepoint(temp); freepoint(temp1); freepoint(temp2);
return true;
}
void init()
{
ONE = newfpoint(0,1);
ZERO = newfpoint(0,0);
O = newpoint(-1,-1,-1,-1);
srand((int)time(0));
}
int main()
{
init();
lint p=48611;
FPOINT * test = newfpoint(0,14);
FPOINT * test1;
CURVE * c = newcurve(0,1);
POINT * P1, * P2, * P3, * temp = newpoint(0,0,0,0);
//add(P,P,c,p,P);
P1 = newpoint(0,35994,0,12884); //8
P2 = newpoint(0,28328,0,38900); //8
P3 = newpoint(0,41736,0,26322); //
showpoint(P1);showpoint(P2);showpoint(P3);
phi(P2,p,temp);
weilpairing(P1,P1,c,p,test);showelement(test);
weilpairing(P1,temp,c,p,test);showelement(test);
weilpairing(P2,temp,c,p,test);showelement(test);
weilpairing(add(P1,P2,c,p,P3),temp,c,p,test);showelement(test);
printf("%lld\n",findorder(P3,c,p));
printf("%lld\n",findorder(P1));
//showelement(fpower(test,8,p,test));
return 0;
}