Files
Weil-Pairing/Miller.cpp
2015-05-15 18:13:53 +08:00

555 lines
9.3 KiB
C++

#include"elliptic.h"
FPOINT * newfpoint(int x, int y)
{
FPOINT * result = (FPOINT *)malloc(sizeof(fpoint));
result->x = x;
result->y = y;
return result;
}
POINT * newpoint(int a, int b, int c, int d)
{
POINT * result = (POINT *)malloc(sizeof(point));
result->x = newfpoint(a,b);
result->y = newfpoint(c,d);
return result;
}
CURVE * newcurve(int A, int B)
{
CURVE * result = (CURVE *)malloc(sizeof(curve));
result->A = newfpoint(0,A);
result->B = newfpoint(0,B);
return result;
}
void freepoint(POINT * a)
{
free(a->x);
free(a->y);
}
//absolute value modulo p
int ABS(int a, int p)
{
return (a>=0)?a%p:(p-(-a)%p)%p;
}
//extended euclid algorithm
int gcdEx(int a, int b, int *x, int *y)
{
if(b==0){
*x = 1,*y = 0;
return a;
}
else{
int r = gcdEx(b, a%b, x, y);
int t = *x;
*x = *y;
*y = t - a/b * *y;
return r;
}
}
int powermod(int a, int n, int p)
{
int result, DB;
result = 1;
DB = a;
while(n>0){
if(n&1)result = (result*DB)%p;
DB = (DB*DB)%p;
n >>= 1;
}
return ABS(result,p);
}
//modulo inverse
int inver(int a, int p)
{
int s,t;
if(gcdEx(a,p,&s,&t)!=1)return 0;
return ABS(s,p);
}
int randomnonq(int p)
{
int i, k = (p-1)>>1;
for(i = 1;i < p;i++){
if(powermod(i,k,p) != 1)break;
}
return i;
}
int modsquareroot(int a, int p)
{
if(powermod(a,(p-1)>>1,p) != 1)return -1;
int r = (p-1)>>1;
int b = randomnonq(p);
int x = r, y = 0;
while(!(x&1)){
x >>= 1; y >>= 1;
if(ABS(powermod(a,x,p)*powermod(b,y,p),p) != 1)y += r;
}
return ABS(powermod(a,(x+1)>>1,p)*powermod(b,y>>1,p),p);
}
bool millerrabin(int n, int r)
{
int s = 0, t = n - 1;
while(!(t&1)){
s++; t >>= 1;
}
while(r--){
int b = rand()%(n-1) + 2;
int r0 = powermod(b,t,n);
int s0 = s - 1;
if(r0 == 1 || r0 == n - 1)continue;
if(s0 < 1)return false;
while(s0--){
r0 = powermod(r0,2,n);
if(r0 == n-1)break;
if(s0 == 0)return false;
}
}
return true;
}
int largerandom(int n)
{
int a = rand()%10000, b = rand()%10000;
return (a+b*10000)%n;
}
int randomgoodprime(int n)
{
int p = 4;
while(!millerrabin(p,10))p = 12*largerandom(n)+11;
return p;
}
//field element equlity judgement
bool equl(FPOINT * a, FPOINT * b)
{
if(a->x == b->x && a->y == b->y)return true;
return false;
}
bool equln(FPOINT * a, FPOINT * b, int p)
{
if(a->x == ABS(-b->x,p)&&a->y == ABS(-b->y,p))return true;
return false;
}
bool pequl(POINT * a, POINT * b)
{
return equl(a->x,b->x)&&equl(a->y,b->y);
}
void showelement(FPOINT * p)
{
printf("(%d,%d)\n",p->x,p->y);
}
FPOINT * fneg(FPOINT * a, int p, FPOINT * result)
{
result->x = ABS(-a->x,p);
result->y = ABS(-a->y,p);
return result;
}
//field elements addition
FPOINT * fadd(FPOINT * a, FPOINT * b, int p, FPOINT * result)
{
int x = ABS(a->x + b->x,p);
int y = ABS(a->y + b->y,p);
result->x = x;
result->y = y;
return result;
}
//field elements minus
FPOINT * fminus(FPOINT * a, FPOINT * b, int p, FPOINT * result)
{
int x = ABS(a->x - b->x,p);
int y = ABS(a->y - b->y,p);
result->x = x;
result->y = y;
return result;
}
//field elements multiplication
FPOINT * fmulti(FPOINT * a, FPOINT * b, int p, FPOINT * result)
{
int x = ABS(a->y*b->x + a->x*b->y,p);
int y = ABS(a->y*b->y - a->x*b->x,p);
result->x = x;
result->y = y;
return result;
}
//field assignment
FPOINT * assign(FPOINT * a, FPOINT * b)
{
a->x = b->x;
a->y = b->y;
return a;
}
//field element expontinal
FPOINT * fpower(FPOINT * a, int n, int p, FPOINT * result)
{
n = n%(p*p - 1);
FPOINT * DB = newfpoint(0,0);
assign(DB,a);
assign(result,ONE);
while(n > 0){
if(n&1)fmulti(DB,result,p,result);
fmulti(DB,DB,p,DB);
n >>= 1;
}
free(DB);
return result;
}
//field element inverse
FPOINT * inverse(FPOINT * a, int p, FPOINT * result)
{
if(a->x == 0){
result->x = 0;
result->y = inver(a->y,p);
return result;
}
int x = inver(ABS(-a->y*a->y*inver(a->x,p)-a->x,p),p);
int y = ABS(-a->y*inver(a->x,p)*x,p);
result->x = x;
result->y = y;
return result;
}
//multiply by number
FPOINT * fnmulti(FPOINT * a, int b, int p, FPOINT * result)
{
result->x = ABS(a->x*b,p);
result->y = ABS(a->y*b,p);
return result;
}
POINT * passign(POINT * a, POINT * b)
{
assign(a->x,b->x);
assign(a->y,b->y);
return a;
}
bool testpoint(POINT * p, CURVE * c, int p1)
{
if(pequl(p,O))return true;
FPOINT * x = newfpoint(0,0);
FPOINT * y = newfpoint(0,0);
assign(x,p->x);
fadd(fadd(fpower(x,3,p1,x),fmulti(c->A,p->x,p1,y),p1,x),c->B,p1,x);
fpower(p->y,2,p1,y);
return equl(x,y);
}
void showpoint(POINT * p)
{
printf("\n[(%d,%d),(%d,%d)]\n",p->x->x,p->x->y,p->y->x,p->y->y);
}
POINT * pneg(POINT * a, int p, POINT * result)
{
if(pequl(a,O)){
passign(result,O);
return result;
}
assign(result->x,a->x);
fneg(a->y,p,result->y);
return result;
}
//curve point additon
POINT * add(POINT * p1, POINT * p2, CURVE * c, int p, POINT * result)
{
if(pequl(p1,O))return passign(result,p2);
if(pequl(p2,O))return passign(result,p1);
if(equl(p1->x,p2->x)&&equln(p1->y,p2->y,p)){
return passign(result,O);
}
FPOINT * x, * y, *lambda;
x = newfpoint(0,0);
y = newfpoint(0,0);
lambda = (FPOINT *)malloc(sizeof(fpoint));
if(equl(p1->x,p2->x)){
fadd(fnmulti(fpower(p1->x,2,p,lambda),3,p,lambda),c->A,p,lambda);
fmulti(lambda,inverse(fnmulti(p1->y,2,p,x),p,x),p,lambda);
}else{
fminus(p2->y,p1->y,p,lambda);
fmulti(lambda,inverse(fminus(p2->x,p1->x,p,x),p,x),p,lambda);
}
fminus(fminus(fpower(lambda,2,p,x),p1->x,p,x),p2->x,p,x);
fminus(fmulti(fminus(p1->x,x,p,y),lambda,p,y),p1->y,p,y);
assign(result->x,x);
assign(result->y,y);
free(lambda);
free(x);
free(y);
return result;
}
POINT * minus(POINT * p1, POINT * p2, CURVE * c, int p, POINT * result)
{
POINT * temp = newpoint(0,0,0,0);
add(pneg(p2,p,temp),p1,c,p,result);
freepoint(temp);
return result;
}
//power of points addition
POINT * ppower(POINT * a, int n, CURVE * c, int p, POINT * result)
{
POINT * DB;
DB = newpoint(0,0,0,0);
passign(DB,a);
passign(result,O);
while(n > 0){
if(n&1)add(DB,result,c,p,result);
add(DB,DB,c,p,DB);
n >>= 1;
}
freepoint(DB);
return result;
}
POINT * randompoint(CURVE * c, int p)
{
POINT * result = newpoint(0,0,0,0);
int x, y;
if((p-1)%3 && equl(c->A,ZERO)){
y = largerandom(p);
int r = inver(3,p-1);
x = powermod(y*y-1, r, p);
}else{
while(1){
x = largerandom(p);
y = ABS(powermod(x,3,p) + c->A->y*x + c->B->y,p);
if((y=modsquareroot(y,p)) != -1)break;
}
}
result->x = newfpoint(0,x);
result->y = newfpoint(0,y);
return result;
}
FPOINT * primitroot(int p)
{
int x, y;
y = inver(2,p);
if((x = modsquareroot(-3,p)) != -1){
y = ABS(x*y - y,p);
return newfpoint(0,y);
}
x = modsquareroot(ABS(y*y - y + 1,p),p);
return newfpoint(x,ABS(-y,p));
}
POINT * phi(POINT * a, int p, POINT * result)
{
fmulti(a->x,primitroot(p),p,result->x);
assign(result->y, a->y);
return result;
}
FPOINT * evalueline(POINT * a, POINT * b, POINT * in, int p, CURVE * c, FPOINT * result)
{
FPOINT * temp1, *temp2;
temp1 = newfpoint(0,0); temp2 = newfpoint(0,0);
if(pequl(a,b)){
fadd(fnmulti(fpower(a->x,2,p,temp1),3,p,temp1),c->A,p,temp1);
fminus(in->x,a->x,p,temp2);
fmulti(temp1,temp2,p,result);
fmulti(fnmulti(a->y,2,p,temp1),fminus(in->y,a->y,p,temp2),p,temp1);
fminus(result,temp1,p,result);
}else{
fmulti(fminus(in->x,b->x,p,temp1),fminus(a->y,b->y,p,temp2),p,result);
fmulti(fminus(a->x,b->x,p,temp1),fminus(in->y,b->y,p,temp2),p,temp1);
fminus(result,temp1,p,result);
}
free(temp1); free(temp2);
return result;
}
bool miller(POINT * a, POINT * b, CURVE * c, int m, int p, FPOINT * f)
{
FPOINT * temp = newfpoint(0,0);
POINT * t = newpoint(0,0,0,0), * tp = newpoint(0,0,0,0);
assign(f,ONE);
passign(t,a);
int i = 0, array[(int)logb((double)m)+1];
while(m){
if(m&1)array[i] = 1;
else
array[i] = 0;
m >>= 1;
i++;
}
for(int j = i - 1;j > 0; j--){
fmulti(f,f,p,f); fmulti(f,evalueline(t,t,b,p,c,temp),p,f);
if(equl(f,ZERO))return false;
add(t,t,c,p,t);
evalueline(t,pneg(t,p,tp),b,p,c,temp);
if(equl(temp,ZERO))return false;
fmulti(inverse(temp,p,temp),f,p,f);
if(array[i] == 1){
fmulti(f,evalueline(t,a,b,p,c,temp),p,f);
if(equl(f,ZERO))return false;
add(t,a,c,p,t);
evalueline(t,pneg(t,p,tp),b,p,c,temp);
if(equl(temp,ZERO))return false;
fmulti(inverse(temp,p,temp),f,p,f);
}
}
return true;
}
void init()
{
ONE = newfpoint(0,1);
ZERO = newfpoint(0,0);
O = newpoint(-1,-1,-1,-1);
srand((int)time(0));
}
int main()
{
init();
int p=23;
FPOINT * test = newfpoint(0,14);
FPOINT * test1;
CURVE * c = newcurve(0,1);
POINT * P1, * P2, * temp = newpoint(0,0,0,0);
//add(P,P,c,p,P);
P1 = randompoint(c,p);//newpoint(0,2,0,7);
P2 = randompoint(c,p);//newpoint(0,16,0,125);
miller(P1,P2,c,10,p,test);
showelement(test);
//passign(P2,P1);
showpoint(P1);
showpoint(P2);
ppower(P1,9,c,p,temp);
showpoint(temp);
phi(temp,p,temp);
showpoint(temp);
//minus(P,P,c,p,P);
//pneg(P,p,P);
//passign(P,O);
printf("%d\n",testpoint(temp,c,p));
//int a = 4;
//showelement(inverse(test,p,test1));
//test1 = primitroot(p);
//showelement(test1);
//fpower(test1,3,p,test1);
//showelement(test1);
//printf("%d\n",inver(14,p));
//printf("%d\n", modsquareroot(a,p));
printf("%d\n",millerrabin(10,10));
return 0;
}