Files
RustySecrets/src/sss/encode.rs
Noah Vesely 73e45bf032 Use Horner's method for evaluating polynomials
Horner's method is an algorithm for calculating polynomials, which consists of
transforming the monomial form into a computationally efficient form. It is
pretty easy to understand:
https://en.wikipedia.org/wiki/Horner%27s_method#Description_of_the_algorithm

This implementation has resulted in a noticeable secret share generation speedup
as the RustySecrets benchmarks show, especially when calculating larger
polynomials:

Before:
test sss::generate_1kb_10_25 ... bench: 3,104,391 ns/iter (+/- 113,824)
test sss::generate_1kb_3_5 ... bench: 951,807 ns/iter (+/- 41,067)

After:
test sss::generate_1kb_10_25        ... bench:   2,071,655 ns/iter (+/- 46,445)
test sss::generate_1kb_3_5          ... bench:     869,875 ns/iter (+/- 40,246)
2018-08-13 21:29:39 +02:00

16 lines
485 B
Rust

use gf256::Gf256;
use std::io;
use std::io::prelude::*;
/// evaluates a polynomial at x=1, 2, 3, ... n (inclusive)
pub(crate) fn encode_secret_byte<W: Write>(src: &[u8], n: u8, w: &mut W) -> io::Result<()> {
for raw_x in 1..(u16::from(n) + 1) {
let x = Gf256::from_byte(raw_x as u8);
let sum = src.iter().rev().fold(Gf256::zero(), |acc, &coeff| {
Gf256::from_byte(coeff) + acc * x
});
w.write_all(&[sum.to_byte()])?;
}
Ok(())
}