mirror of
https://github.com/mii443/AzooKeyKanaKanjiConverter.git
synced 2025-08-22 15:05:26 +00:00
246 lines
10 KiB
Swift
246 lines
10 KiB
Swift
import llama
|
|
import SwiftUtils
|
|
import Foundation
|
|
|
|
enum ZenzError: LocalizedError {
|
|
case couldNotLoadModel(path: String)
|
|
case couldNotLoadContext
|
|
|
|
var errorDescription: String? {
|
|
switch self {
|
|
case .couldNotLoadContext: "failed to load context"
|
|
case .couldNotLoadModel(path: let path): "could not load model weight at \(path)"
|
|
}
|
|
}
|
|
}
|
|
|
|
class ZenzContext {
|
|
private var model: OpaquePointer
|
|
private var context: OpaquePointer
|
|
private var prevInput: [llama_token] = []
|
|
|
|
private let n_len: Int32 = 512
|
|
|
|
init(model: OpaquePointer, context: OpaquePointer) {
|
|
self.model = model
|
|
self.context = context
|
|
}
|
|
|
|
deinit {
|
|
llama_free(context)
|
|
llama_free_model(model)
|
|
llama_backend_free()
|
|
}
|
|
|
|
private static var ctx_params: llama_context_params {
|
|
let n_threads = max(1, min(8, ProcessInfo.processInfo.processorCount - 2))
|
|
debug("Using \(n_threads) threads")
|
|
var ctx_params = llama_context_default_params()
|
|
ctx_params.seed = 1234
|
|
ctx_params.n_ctx = 512
|
|
ctx_params.n_threads = UInt32(n_threads)
|
|
ctx_params.n_threads_batch = UInt32(n_threads)
|
|
ctx_params.n_batch = 512
|
|
return ctx_params
|
|
}
|
|
|
|
static func createContext(path: String) throws -> ZenzContext {
|
|
llama_backend_init()
|
|
var model_params = llama_model_default_params()
|
|
model_params.use_mmap = true
|
|
let model = llama_load_model_from_file(path, model_params)
|
|
guard let model else {
|
|
debug("Could not load model at \(path)")
|
|
throw ZenzError.couldNotLoadModel(path: path)
|
|
}
|
|
|
|
let context = llama_new_context_with_model(model, ctx_params)
|
|
guard let context else {
|
|
debug("Could not load context!")
|
|
throw ZenzError.couldNotLoadContext
|
|
}
|
|
|
|
return ZenzContext(model: model, context: context)
|
|
}
|
|
|
|
func reset_context() throws {
|
|
llama_free(self.context)
|
|
let context = llama_new_context_with_model(self.model, Self.ctx_params)
|
|
guard let context else {
|
|
debug("Could not load context!")
|
|
throw ZenzError.couldNotLoadContext
|
|
}
|
|
self.context = context
|
|
}
|
|
|
|
private func get_logits(tokens: [llama_token], logits_start_index: Int = 0) -> UnsafeMutablePointer<Float>? {
|
|
// manage kv_cache
|
|
do {
|
|
let commonTokens = self.prevInput.commonPrefix(with: tokens)
|
|
llama_kv_cache_seq_rm(context, 0, llama_pos(commonTokens.count), -1)
|
|
}
|
|
var batch = llama_batch_init(512, 0, 1)
|
|
let n_ctx = llama_n_ctx(context)
|
|
let n_kv_req = tokens.count + (Int(n_len) - tokens.count)
|
|
if n_kv_req > n_ctx {
|
|
debug("error: n_kv_req > n_ctx, the required KV cache size is not big enough")
|
|
}
|
|
for i in tokens.indices {
|
|
llama_batch_add(&batch, tokens[i], Int32(i), [0], logits: logits_start_index <= i)
|
|
}
|
|
// 評価
|
|
if llama_decode(context, batch) != 0 {
|
|
debug("llama_decode() failed")
|
|
return nil
|
|
}
|
|
return llama_get_logits(context)
|
|
}
|
|
|
|
func evaluate(text: String, ignorePrompt: String = "") -> Float {
|
|
let tokens_list = self.tokenize(text: text, add_bos: true, add_eos: true)
|
|
guard let logits = self.get_logits(tokens: tokens_list) else {
|
|
debug("logits unavailable")
|
|
return .nan
|
|
}
|
|
let tokenizedPromptCount = ignorePrompt.isEmpty ? 1 : tokenize(text: ignorePrompt, add_bos: true, add_eos: false).count
|
|
let n_vocab = llama_n_vocab(model)
|
|
|
|
var sum: Float = 0
|
|
// 最初のプロンプト部分は無視する
|
|
for (i, token_id) in tokens_list.indexed().dropFirst(tokenizedPromptCount) {
|
|
// FIXME: there can be more efficient implementations, poossibly using Accelerate or other frameworks.
|
|
var log_prob: Float = 0
|
|
for index in ((i - 1) * Int(n_vocab)) ..< (i * Int(n_vocab)) {
|
|
log_prob += exp(logits[index])
|
|
}
|
|
log_prob = log(log_prob)
|
|
log_prob = logits[Int((i - 1) * Int(n_vocab) + Int(token_id))] - log_prob
|
|
sum += log_prob
|
|
}
|
|
return sum
|
|
}
|
|
|
|
enum CandidateEvaluationResult: Sendable, Equatable, Hashable {
|
|
case error
|
|
case pass(score: Float)
|
|
case fixRequired(prefixConstraint: String)
|
|
case wholeResult(String)
|
|
}
|
|
|
|
func evaluate_candidate(input: String, candidate: String) -> CandidateEvaluationResult {
|
|
// For zenz-v1 model, \u{EE00} is a token used for 'start query', and \u{EE01} is a token used for 'start answer'
|
|
// We assume \u{EE01}\(candidate) is always splitted into \u{EE01}_\(candidate) by zenz-v1 tokenizer
|
|
let prompt = "\u{EE00}\(input)\u{EE01}"
|
|
// Therefore, tokens = prompt_tokens + candidate_tokens is an appropriate operation.
|
|
let prompt_tokens = self.tokenize(text: prompt, add_bos: true, add_eos: false)
|
|
let candidate_tokens = self.tokenize(text: candidate, add_bos: false, add_eos: false)
|
|
let tokens = prompt_tokens + candidate_tokens
|
|
let startOffset = prompt_tokens.count - 1
|
|
let pos_max = llama_kv_cache_seq_pos_max(self.context, 0)
|
|
print("pos max:", pos_max)
|
|
guard let logits = self.get_logits(tokens: tokens, logits_start_index: startOffset) else {
|
|
debug("logits unavailable")
|
|
return .error
|
|
}
|
|
let n_vocab = llama_n_vocab(model)
|
|
|
|
var score: Float = 0
|
|
for (i, token_id) in tokens.indexed().dropFirst(prompt_tokens.count) {
|
|
// それぞれのトークンが、一つ前の予測において最も確率の高いトークンであるかをチェックする
|
|
// softmaxはmaxなので、単にlogitsの中で最も大きいものを選べば良い
|
|
// 一方実用的にはlog_probも得ておきたい。このため、ここでは明示的にsoftmaxも計算している
|
|
var exp_sum: Float = 0
|
|
var max_token: llama_token = 0
|
|
var max_exp: Float = .infinity * -1
|
|
let startIndex = (i - 1 - startOffset) * Int(n_vocab)
|
|
let endIndex = (i - startOffset) * Int(n_vocab)
|
|
for index in startIndex ..< endIndex {
|
|
let v = exp(logits[index])
|
|
exp_sum += v
|
|
if max_exp < v {
|
|
max_exp = v
|
|
max_token = llama_token(index - startIndex)
|
|
}
|
|
}
|
|
// ここで最も良い候補であったかをチェックする
|
|
if max_token != token_id {
|
|
if max_token == llama_token_eos(model) {
|
|
var cchars = tokens[..<i].reduce(into: []) {
|
|
$0.append(contentsOf: token_to_piece(token: $1))
|
|
}
|
|
// adding "\0"
|
|
cchars.append(0)
|
|
let string = String(cString: cchars)
|
|
// 要求するべき制約を記述する
|
|
let wholeResult = String(string.dropFirst(prompt.count))
|
|
return .wholeResult(wholeResult)
|
|
} else {
|
|
var cchars = tokens[..<i].reduce(into: []) {
|
|
$0.append(contentsOf: token_to_piece(token: $1))
|
|
}
|
|
// adding "\0"
|
|
cchars += token_to_piece(token: max_token) + [0]
|
|
let string = String(cString: cchars)
|
|
// 要求するべき制約を記述する
|
|
let prefixConstraint = String(string.dropFirst(prompt.count))
|
|
return .fixRequired(prefixConstraint: prefixConstraint)
|
|
}
|
|
}
|
|
score += log(max_exp) - log(exp_sum)
|
|
}
|
|
return .pass(score: score)
|
|
}
|
|
|
|
private func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama_pos, _ seq_ids: [llama_seq_id], logits: Bool) {
|
|
batch.token [Int(batch.n_tokens)] = id
|
|
batch.pos [Int(batch.n_tokens)] = pos
|
|
batch.n_seq_id[Int(batch.n_tokens)] = Int32(seq_ids.count)
|
|
for i in 0..<seq_ids.count {
|
|
batch.seq_id[Int(batch.n_tokens)]![Int(i)] = seq_ids[i]
|
|
}
|
|
batch.logits [Int(batch.n_tokens)] = logits ? 1 : 0
|
|
batch.n_tokens += 1
|
|
}
|
|
|
|
private func tokenize(text: String, add_bos: Bool, add_eos: Bool = false) -> [llama_token] {
|
|
let utf8Count = text.utf8.count
|
|
let n_tokens = utf8Count + (add_bos ? 1 : 0)
|
|
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
|
|
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
|
|
var swiftTokens: [llama_token] = if tokenCount < 0 {
|
|
[llama_token_bos(model)]
|
|
} else {
|
|
(0..<tokenCount).map{tokens[Int($0)]}
|
|
}
|
|
tokens.deallocate()
|
|
if add_eos {
|
|
swiftTokens.append(llama_token_eos(model))
|
|
}
|
|
return swiftTokens
|
|
}
|
|
|
|
/// - note: The result does not contain null-terminator
|
|
private func token_to_piece(token: llama_token) -> [CChar] {
|
|
let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8)
|
|
result.initialize(repeating: Int8(0), count: 8)
|
|
defer {
|
|
result.deallocate()
|
|
}
|
|
let nTokens = llama_token_to_piece(model, token, result, 8, false)
|
|
|
|
if nTokens < 0 {
|
|
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
|
|
newResult.initialize(repeating: Int8(0), count: Int(-nTokens))
|
|
defer {
|
|
newResult.deallocate()
|
|
}
|
|
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, false)
|
|
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
|
|
return Array(bufferPointer)
|
|
} else {
|
|
let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nTokens))
|
|
return Array(bufferPointer)
|
|
}
|
|
}
|
|
}
|